• Title/Summary/Keyword: Inflammatory

Search Result 10,806, Processing Time 0.038 seconds

In vitro Anti-inflammatory Activity of the Artemisia fukudo Extracts in Murine Macrophage RAW 264.7 Cells (큰비쑥(Artemisia fukudo) 추출물의 murine macrophage RAW 264.7 세포에서 in vitro 항염효과)

  • Yoon, Weon-Jong;Lee, Jung-A;Kim, Kil-Nam;Kim, Ji-Young;Park, Soo-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.464-469
    • /
    • 2007
  • The present study describes the preliminary evaluation of the anti-inflammatory activities of Artemisia fukudo extracts. The 80% ethanol extract of A. fukudo was sequentially fractionated with n-hexane, dichloromethane, ethylacetate, and butanol. In order to effectively screen for anti-inflammatory agents, we first examined the extracts’ inhibitory effects on the production of pro-inflammatory cytokines activated with lipopolysaccharide. Moreover, we examined the inhibitory effects of the A. fukudo extracts on pro-inflammatory factors (NO, iNOS, COX-2, and $PGE_{2}$) in murine macrophage RAW 264.7 cells. The protein levels were determined by immunoblotting. Of the sequential solvent fractions, the n-hexane and dichloromethane fractions inhibited the mRNA expression of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6), production of NO and $PGE_{2}$, and the protein levels of iNOS and COX-2. These results suggest that A. fukudo may have signifIcant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic plant.

Anti-inflammatory and Anti-Atopic Effects of Crude Extracts and Solvent Fractions of Phormium tenax leaf (신서란(Phormium tenax) 잎 조추출물 및 용매 분획물의 항염증 및 항아토피 효과)

  • Yang, Kwon Min;Song, Sang mok;Lee, Doseung;Yoon, Weon-Jong;Kim, Chan-Shick;Kim, Chang Sook
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.433-441
    • /
    • 2019
  • This study describes a preliminary evaluation of the anti-inflammatory activity and anti-atopic activity of Phormium tenax leaf extracts. P. tenax leaf was extracted using 70% ethanol and then fractionated sequentially with n-hexane, methylene chloride, ethyl acetate, n-butanol. In order to effectively screen for anti-inflammatory agents, we first investigated the inhibitory effects of P. tenax leaf crude extracts and solvent fractions on production of pro-inflammatory factors[nitric oxide(NO), prostaglandin $E_2(PGE_2)$, inducible nitric oxide synthase(iNOS) and cyclooxygenase-2(COX-2)] and pro-inflammatory cytokines [tumor necrosis $factor-{\alpha}(TNF-{\alpha})$, interleukin-6(IL-6) and $interleukin-1{\beta}(IL-1{\beta})$] in lipopolysaccharide(LPS)-stimulated RAW 264.7 cells. In addition, we also evaluated of their inhibitory effect on the atopic dermatitis-like inflammatory markers such as macrophage-derived chemokine(MDC) and thymus and activation-regulated chemokine(TARC) in HaCaT cells. Among the five solvent fractions of P. tenax, methylene chloride and ethyl acetate fractions inhibited production of pro-inflammatory factors and pro-inflammatory cytokines in a dose dependent manner, respectively. These fractions were also showed inhibitory activity for MDC and TARC expression levels in $IFN-{\gamma}-stimulated$ HaCaT cells, respectively. These results suggest that P. tenax have significantly effects of anti-inflammatory activity and anti-atopic activity that might be beneficial for the topical treatment of inflammatory skin disorders.

Anti-inflammatory activity of Eurya persicifolia Gagnep. extract in Propionibacterium acnes-induced inflammatory signaling by regulation of NF-κB activity (Propionibacterium acnes에 의한 염증반응에서 Eurya persicifolia Gagnep. 추출물의 억제효과)

  • Shin, Jin Hak;Seo, Su Ryeon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.213-219
    • /
    • 2019
  • Acne is a chronic inflammatory disease outbreak in the sebaceous glands within the hair follicle. The proliferation of Propionibacterium acnes (P. acnes) causes monocytes to stimulate secretion of inflammatory cytokines. A number of studies proposed the inhibitory effects of P. acnes-mediated inflammation by several natural extracts. However, studies on the effect of Eurya persicifolia Gagnep. (E. persicifolia) extracts on the inflammatory responses by P. acnes have not been explored yet. In this study, we investigated the anti-inflammatory effect of E. persicifolia extract in the inflammatory reactions induced by P. acnes. We found that E. persicifolia extract successfully diminished the expression levels of inflammatory mediators such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, and iNOS in P. acnes-activated mouse macrophage RAW 264.7 cells. We found that the immunosuppressive effect of E. persicifolia extract in the P. acnes-activated inflammatory signaling is mediated by the regulation of NF-${\kappa}B$ transcriptional activation, which is a key regulator of inflammatory cytokine expression. Our results suggest that E. persicifolia extract held potentials for the treatment of P. acnes by suppressing NF-${\kappa}B$ signaling pathways.

Comparative Effect on Anti-Inflammatory Activity of the Phellinus linteus and Phellinus linteus Grown in Germinated Brown Rice Extracts in Murine Macrophage RAW 264.7 Cells (상황버섯과 발아현미상황버섯 열수추출물의 Murin Macrophage RAW 264.7 세포에서 항염증 반응 비교)

  • Jeoung, Young-Jun;Choi, Se-Young;An, Chi-Sun;Jeon, Yun-Hee;Park, Dong-Ki;Lim, Beoung-Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • The present study describes the preliminary evaluation of the anti-inflammatory activities of Phellinus linteus (PL) and Phellinus linteus Grow in Germinated Brown Rice (BRPL). In order to effectively screen for anti-inflammatory agents, we first examined the extracts' inhibitory effects on the expression of pro-inflammatory cytokines activated with lipopolysaccharide. Moreover, we examined the inhibitory effects of the PL and BRPL extracts on pro-inflammatory factors such as NO, iNOS, $TNF-{\alpha}$ and $IFN-{\gamma}$ in murine macrophage RAW 264.7 cells. NO production and iNOS expression was significantly augmented in LPS treated cell, the production of NO and iNOS was greater in the BRPL than in the PL group. In addition, protein and mRNA levels of $TNF-{\alpha}$ and $IFN-{\gamma}$ in BRPL showed relatively more potent pro-inflammatory-activity inhibition compared to that of PL. These results suggest that BRPL may have significant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic materials.

Anti-Inflammatory Activity of the Total Flavonoid Fraction from Broussonetia papyrifera in Combination with Lonicera japonica

  • Jin, Jeong-Ho;Lim, Hyun;Kwon, Soon-Youl;Son, Kun-Ho;Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.197-204
    • /
    • 2010
  • To establish the anti-inflammatory activity of the total flavonoid fraction of the root barks of Broussonetia papyrifera (EBP) and a new formula, the ethanol extract of the root barks of B. papyrifera was fractionated with ethylacetate, yielding the hydrophobic prenylated flavonoid-enriched fraction. EBP and the ethanol extract of the whole Lonicera japonica (ELJ) plant were then mixed at a ratio of 1:1 (w/w) to give a new preparation (BL) in the hope of obtaining an optimal formula with a higher anti-inflammatory activity. Evaluation of the effects of these preparations on A23187-treated rat basophilic leukemia (RBL-1) cells revealed that EBP potently inhibited 5-lipoxygenase (5-LOX), while ELJ showed weak inhibition. Additionally, the mixture (BL) clearly showed stronger inhibitory effects against 5-LOX than either preparation alone. These preparations also inhibited cyclooxygenase-2-catalyzed $PGE_2$ and inducible nitric oxide (NO) synthase-catalyzed NO production by lipopolysaccharide-treated RAW 264.7 cells. When tested against arachidonic acid-induced mouse ear edema, EBP showed strong inhibitory activity at doses of 5-200 mg/kg when administered orally, but BL had obviously stronger inhibitory effects. When tested against ${\lambda}$-carrageenan-induced paw edema in mice, BL showed a potent and synergistic anti-inflammatory effect. In addition, in the acetic acid-induced writhing test, BL was found to have strong analgesic activity at 50-400 mg/kg. Taken together, these results indicate that each of these preparations exert anti-inflammatory activity in vitro and in vivo. In particular, BL showed stronger anti-inflammatory activity than EBP, and these anti-inflammatory effects were partially related to the inhibition of eicosanoid and NO production. BL may be useful for the treatment of human inflammatory disorders.

Coptis chinensis Extract Inhibits the Production of Inflammatory Mediators and Delayed Type Hypersensitivity in Mice

  • Lee, Yeon-Ah;Hong, Seung-Jae;Lee, Sang-Hoon;Kim, Kyoung-Soo;Park, Eun-Kyung;Jung, Ki-Won;Han, Chung-Soo;Yoo, Myung-Chul;Yang, Hyung-In
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Background: Coptis chinensis rhizome has been used as a medicinal herb in traditional Oriental medicine. We investigated the effects of Coptis chinensis extract on inflammatory mediators and delayed type hypersensitivity in mice. Methods: The inhibitory effect of ethanolic extract of Coptis chinensis (CCE) on cell proliferation was evaluated using MTS assay. The lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and the Con A-activated mouse splenocytes were cultured with various concentrations of CCE. Total nitric oxide (NO) production was determined by Griess reaction. The amounts of secreted prostaglandine E2 ($PGE_2$), interleukin (IL)-2 and IFN-${\gamma}$ were measured by ELISA. To investigate the in vivo anti-inflammatory effect of CCE, oxazolone-induced delayed type hypersensitivity (DTH) model was used. Results: The CCE at $100{\mu}g/ml$ significantly blocked the LPS-induced production of pro-inflammatory mediators (NO and PGE) in RAW264.7 macrophages. Also, it significantly inhibited cell proliferation and cytokine (IL-2 and IFN-${\gamma}$) production in splenocytes. Furthermore, when splenocytes from CCE fed mice (200 mg/kg for 2 weeks) were activated with Con A, cell proliferation and cytokine production were significantly inhibited. In addition, CCE decreased in vivo inflammation in oxazolone-induced DTH model mice. Conclusion: We suggest that Coptis chinensis can be used as an anti-inflammatory drug by exerting an inhibitory effect in inflammatory mediator- and cell-mediated inflammation.

Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Jeong, Chang Hee;Cheng, Wei Nee;Bae, Hyojin;Lee, Kyung Woo;Han, Sang Mi;Petriello, Michael C.;Lee, Hong Gu;Seo, Han Geuk;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1827-1836
    • /
    • 2017
  • The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides (e.g., melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS ($1{\mu}g/ml$) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and $5{\mu}g/ml$) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-${\alpha}$. Activation of NF-${\kappa}B$, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species (e.g., superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-${\kappa}B$, ERK1/2, and COX-2 signaling.

Effect of 'DaoCao' on the inflammatory cytokines in Human Jurkat cell and THP-1 cell (나초(糯草) 에탄올추출물이 Human 유래 Jurkat 세포와 THP-1 세포의 알러지 및 염증 사이토카인에 미치는 영향)

  • LEE, Young Keun;KIM, Cheong Taek;ROH, Seong Su;CHOI, Hak Joo
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.45-49
    • /
    • 2015
  • Objectives : The aim of this study is to investigate anti-inflammatory activity using various extracts of rice straw (DaoCao) extract (RS).Methods : To investigate the anti-inflammatory effect of RS, we examined the effect of RS on cytokines production on THP-1 cell. Cells were cultured in incubator (37℃, CO25%, 0.5% FBS-RPMI, 1X106cells/ml). One hour after,Dermatophagoides pteronissinus(Dp., 10 ug/ml) was treated into cell and at 6 hour after, each different concentrations(0.1, 1 and 10 ug/ml) of RS were treated. The cells were incubated for 16 hours and harvest the supernatant. The levels of IL-4, IL-5, IL-6, IL-8, MCP-1 and TNF-αwere determined using a commercially available ELISA kit.Results : We investigated whether RS has the inhibition of inflammatory response in Jurkat cells and THP-1 cells. RS suppressed secretion of IL-4, IL-5, and TNF-αinduced by house dust mites in Jurkat cells. It showed significant effects for all concentrations. RS suppressed the increased expression of IL-6, IL-8 and MCP-1 after treatment with mite in THP-1 cells. These results suggest that RS may be used as a valuable agent for treating allergic diseases such as atopy due to its anti-inflammatory property.Conclusions : RS showed significant biological activities with anti-inflammatory in the human T cells. These results suggest that RS may be used as a valuable agent for treating allergic diseases such as atopy due to its anti-inflammatory property. In terms of Korean traditional medicine, we expect the results to contribute to building of EBM (Evidence-Based Medicine).

Transcutaneous electrical nerve stimulation, acupuncture, and spinal cord stimulation on neuropathic, inflammatory and, non-inflammatory pain in rat models

  • Sato, Karina Laurenti;Sanada, Luciana Sayuri;da Silva, Morgana Duarte;Okubo, Rodrigo;Sluka, Kathleen A.
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.121-130
    • /
    • 2020
  • Background: Transcutaneous electrical nerve stimulation (TENS), manual acupuncture (MA), and spinal cord stimulation (SCS) are used to treat a variety of pain conditions. These non-pharmacological treatments are often thought to work through similar mechanisms, and thus should have similar effects for different types of pain. However, it is unclear if each of these treatments work equally well on each type of pain condition. The purpose of this study was to compared the effects of TENS, MA, and SCS on neuropathic, inflammatory, and non-inflammatory pain models. Methods: TENS 60 Hz, 200 ㎲, 90% motor threshold (MT), SCS was applied at 60 Hz, an intensity of 90% MT, and a 0.25 ms pulse width. MA was performed by inserting a stainless-steel needle to a depth of about 4-5 mm at the Sanyinjiao (SP6) and Zusanli (ST36) acupoints on a spared nerve injury (SNI), knee joint inflammation (3% carrageenan), and non-inflammatory muscle pain (intramuscular pH 4.0 injections) in rats. Mechanical withdrawal thresholds of the paw, muscle, and/or joint were assessed before and after induction of the pain model, and daily before and after treatment. Results: The reduced withdrawal thresholds were significantly reversed by application of either TENS or SCS (P < 0.05). MA, on the other hand, increased the withdrawal threshold in animals with SNI and joint inflammation, but not chronic muscle pain. Conclusions: TENS and SCS produce similar effects in neuropathic, inflammatory and non-inflammatory muscle pain models while MA is only effective in inflammatory and neuropathic pain models.

IMMUNOHISTOCHEMICAL STUDIES ON CELL POPULATION AND GROWTH FACTORS IN GINGIVAL HYPERPLASIA (치은증식시 세포구성과 성장인자에 관한 면역조직화학적 연구)

  • Lee, Kang-Nam;Han, Soo-Boo;Lee, Jae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.357-375
    • /
    • 1994
  • The purpose of this study was to investigate the differences of histochemical characteristics in inflammatory fibrous gingival hyperplasia (FGH), phenytoin-induced gingival hyperplasia(PIGH), idiopathic gingival hyperplasia(IDGH) and control groups (healthy and inflammatory gingiva) by immunohistochemical method with various antibodies and histomorphological analysis. In immunohistochemical finding, antibodies to inflammatory cells (T/B lymphocytes, macrophages, other monocytes), proliferating cell nuclear antigen(PCNA), epidermal growth factor(EGF), factor VIII, and type I collagen were used. 1. The inflammatory infiltrates in FGH were less than those in inflammatory gingiva. The composition of inflammatory cells of PIGH was similar with that of FGH. IDGH showed a similar histologic findings with healthy gingival tissue. 2. In FGH, the number of fibroblasts and newly-formed collagen fibers was increased. No significant increase of fibroblasts and the dense accumulation of thick collagen fibers were seen in PIGH. The increase of fibroblasts and the dense accumulation of thick collagen were seen in IDGH. 3. PCNA-positive cells were localized mainly in the area accumulated with inflammatory cells and blood vessels, significantly increased in all hyperplastic tissue groups, and distributed evenly in IDGH. 4. The distribution of EGF were not observed in healthy gingiva but detected locally in area with confluent blood vessels,without significant difference between the other tissue groups. This results suggest that inflammation plays a significant role in inducing hyperplastic change of gingival tissue. While in DIGH, drug itself as well as inflammation seems to attribute to hyperplastic change.

  • PDF