• 제목/요약/키워드: Inflammation inhibitor

검색결과 350건 처리시간 0.033초

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • 제36권2호
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo;Ji-Eun Lee;Do-Won Ham;Eun-Hee Shin
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.30-41
    • /
    • 2024
  • The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.

FCA에 의한 염증 유발 후 주입된 L-NAME이 기계적 통각과민에 미치는 영향 (Effects of L-NAME on the Mechanical Hyperalgesia after the Development of Inflammation by Freund's Complete Adjuvant in Rat Paw)

  • 김민경;최윤;공현석;임중우;임항수;정수진;이청
    • The Korean Journal of Pain
    • /
    • 제12권2호
    • /
    • pp.171-176
    • /
    • 1999
  • Background: Effect of nitric oxide on the hyperalgesia induced by inflammation is controversial. From our previous experiment, NOS inhibitor, L-NAME given during the induction period decrease mechanical hyperalgesia occured by Freund's complete adjuvant induced inflammation. In addition, we attempted to analyze the effects of L-NAME on mechanical hyperalgesia after the development of inflammation by Freund's complete adjuvant in rat paw. Methods: Male Sprague Dawley rats were divided into four groups; control (normal saline), and three different doses of L-NAME (0.1 mg, 1 mg, 10 mg). Inflammation was induced in rats by injecting 0.15 ml of Freund's complete adjuvant (FCA) intraplantarly. Rats showed typical hyperalgesia within twelve hours after injection and maintained this for about one week. Tests were done 2 days after injection of FCA. After the baseline test either L-NAME or saline was injected under light halothane anesthesia. Effect of L-NAME on hyperalgesia was assessed by measuring mechanical hyperalgesia at 15, 30, 60, 90, 120 minutes. Same experients were repeated on normal rats. Results: When injected at the site of inflammation, L-NAME caused dose dependent decrease in mechanical hyperalgesia. However, normal rats also showed increased mechanical threshold after L- NAME injection. Conclusions: Although L-NAME reduces FCA induced mechanical hyperalgesia, this result may solely be due to inhibition of nitric oxide production and need to be further determined.

  • PDF

Role of AMP-Activated Protein Kinase (AMPK) in Smoking-Induced Lung Inflammation and Emphysema

  • Lee, Jae Seung;Park, Sun Joo;Cho, You Sook;Huh, Jin Won;Oh, Yeon-Mok;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • 제78권1호
    • /
    • pp.8-17
    • /
    • 2015
  • Background: AMP-activated protein kinase (AMPK) not only functions as an intracellular energy sensor and regulator, but is also a general sensor of oxidative stress. Furthermore, there is recent evidence that it participates in limiting acute inflammatory reactions, apoptosis and cellular senescence. Thus, it may oppose the development of chronic obstructive pulmonary disease. Methods: To investigate the role of AMPK in cigarette smoke-induced lung inflammation and emphysema we first compared cigarette smoking and polyinosinic-polycytidylic acid [poly(I:C)]-induced lung inflammation and emphysema in $AMPK{\alpha}1$-deficient ($AMPK{\alpha}1$-HT) mice and wild-type mice of the same genetic background. We then investigated the role of AMPK in the induction of interleukin-8 (IL-8) by cigarette smoke extract (CSE) in A549 cells. Results: Cigarette smoking and poly(I:C)-induced lung inflammation and emphysema were elevated in $AMPK{\alpha}1$-HT compared to wild-type mice. CSE increased AMPK activation in a CSE concentration- and time-dependent manner. 5-Aminoimidazole-4-carboxamide-1-${\beta}$-4-ribofuranoside (AICAR), an AMPK activator, decreased CSE-induced IL-8 production while Compound C, an AMPK inhibitor, increased it, as did pretreatment with an $AMPK{\alpha}1$-specific small interfering RNA. Conclusion: $AMPK{\alpha}1$-deficient mice have increased susceptibility to lung inflammation and emphysema when exposed to cigarette smoke, and AMPK appears to reduce lung inflammation and emphysema by lowering IL-8 production.

Effect of saccharin on inflammation in 3T3-L1 adipocytes and the related mechanism

  • Kim, Hye Lin;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • 제14권2호
    • /
    • pp.109-116
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Excessive intake of simple sugars induces obesity and increases the risk of inflammation. Thus, interest in alternative sweeteners as a sugar substitute is increasing. The purpose of this study was to determine the effect of saccharin on inflammation in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were differentiated into adipocytes. The adipocytes were treated with saccharin (0, 50, 100, and 200 ㎍/mL) for 24 h. Inflammation was induced by exposure of treated adipocytes to lipopolysaccharide (LPS) for 18 h and cell proliferation was measured. The concentration of nitric oxide (NO) was measured by using Griess reagent. Protein expressions of nuclear factor kappa B (NF-κB) and inhibitor κB (IκB) were determined by western blot analysis. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 1β (IL-1β), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) were determined by real-time PCR. RESULTS: Compared with the control group, the amount of NO and the mRNA expression of iNOS in the LPS-treated group were increased by about 17.6% and 46.9%, respectively, (P < 0.05), and those parameter levels were significantly decreased by saccharin treatment (P < 0.05). Protein expression of NF-κB was decreased and that of IκB was increased by saccharin treatment (P < 0.05). Saccharin decreased the mRNA expression of COX-2 and the inflammation cytokines (IL-1β, IL-6, MCP-1, and TNF-α) (P < 0.05). CONCLUSIONS: The results of this study suggest that saccharin can inhibit LPS-induced inflammatory responses in 3T3-L1 adipocytes via the NF-κB pathway.

Matrix Degradative Enzymes and Their Inhibitors during Annular Inflammation : Initial Step of Symptomatic Intervertebral Disc Degeneration

  • Kim, Joo Han;Park, Jin Hyun;Moon, Hong Joo;Kwon, Taek Hyun;Park, Youn Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권5호
    • /
    • pp.237-243
    • /
    • 2014
  • Objective : Symptomatic disc degeneration develops from inflammatory reactions in the annulus fibrosus (AF). Although inflammatory mediators during annular inflammation have been studied, the roles of matrix metalloproteinases (MMPs) and their inhibitors have not been fully elucidated. In this study, we evaluated the production of MMPs and tissue inhibitors of metalloproteinase (TIMPs) during annular inflammation using an in vitro co-culture system. We also examined the effect of notochordal cells on annular inflammation. Methods : Human AF (hAF) pellet was co-cultured for 48 hours with phorbol myristate acetate-stimulated macrophage-like THP-1 cells. hAF pellet and conditioned media (CM) from co-cultured cells were assayed for MMPs, TIMPs, and insulin-like growth factor (IGF)-1 levels using real-time reverse-transcriptase polymerase chain reaction and enzyem-linked immunosorbent assay. To evaluate whether notochordal cells affected MMPs or TIMPs production on annular inflammation, hAF co-cultured with notochordal cells from adult New Zealand White rabbits, were assayed. Results : MMP-1, -3, -9; and TIMP-1 levels were significantly increased in CM of hAF co-cultured with macrophage-like cells compared with hAF alone, whereas TIMP-2 and IGF-1 levels were significantly decreased (p<0.05). After macrophage exposure, hAF produced significantly more MMP-1 and -3 and less TIMP-1 and -2. Interleukin-$1{\beta}$ stimulation enhanced MMP-1 and -3 levels, and significantly diminished TIMP-2 levels. Co-culturing with rabbit notochordal cells did not significantly influence MMPs and TIMPs production or COL1A2 gene expression. Conclusion : Our results indicate that macrophage-like cells evoke annular degeneration through the regulation of major degradative enzymes and their inhibitors, produced by hAF, suggesting that the selective regulation of these enzymes provides future targets for symptomatic disc degeneration therapy.

퇴행성 뇌질환 치료제 Tacrine 유도체의 프로스타글란딘 생합성 억제효과 (Inhibitory Effects of of Tacrine Derivatives on Activity of Prostanoids Biosynthesis Prostaglandin Biosynthesis: A Potential Use for Degenerative Brain Disease Treatment)

  • 신혜순
    • 약학회지
    • /
    • 제49권1호
    • /
    • pp.103-108
    • /
    • 2005
  • Tacrine analogues for degenerative brain disease treatments have been designed. A series of diazaanthrine derivatives as novel analogues of tacrine has been prepared through the alkyl substitution and the ring expansion. They were expected to retain anti-inflammatory activity by inhibition of prostaglandin production with reduction of side effect as the selective prostaglandin synthase inhibitor. Prostaglandin synthase expression is associated with the deposition of beta-amyloid protein in neuritic plaques in brain inflammation. Therefore selective prostaglandin synthase blockade is important for the prevention and treatment of alzheimer's disease. To evaluate inhibitory effect of prostaglandin synthase, synthetic tacrine derivatives were screened with accumulation of prostaglandin biosynthesis by lipopolysaccharide in aspirin-treated murine macrophage cell. Most of synthetic compounds have shown significant prostaglandin synthase activities in vitro screening with $84.3{\sim}33.6\%$ inhibition of the prostaglandin $E_2$ production at $10\;{\mu}g/ml$.

Yomogin, an Inhibitor of Nitric Oxide Production in LPS-Activated Macrophages

  • Ryu, Jae-Ha;Lee, Hwa-Jin;Jeong, Yeon-Su;Ryu, Shi-Yong;Han, Yong-Nam
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.481-484
    • /
    • 1998
  • In activated macrophages the inducible form of nitric oxide synthase (i-NOS) generates high amounts of toxic mediator, nitric oxide (NO) which contributes to the circulatory failure associated with septic shock. A sesquiterpene lactone compound (yomogin) isolated from medicinal plant Artemisia princeps Pampan inhibited the production of NO in LPS-activated RAW 264.7 cells by suppressing i-NOS enzyme expression. Thus, yomogin may be a useful candidate for the development of new drugs to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  • PDF

CJ-11668, A new selective and potent COX-2 inhibitor, reduces inflamation, fever and pain in animal models

  • Kim, Seong-Woo;Park, Hyun-Jung;Kim, Young-Gi;Yeon, Kyu-Jeong;Ryu, Hyung-Chul;Park, Sang-Wook;Kim, Jong-Hoon;Ko, Dong-Hyun;Chae, Myeong-Yun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.94.2-94.2
    • /
    • 2003
  • CJ-11668 is a new potent and selective COX-2 inhibitor. CJ-11668 showed COX-2 inhibition (IC50) of 65nM and selectivity ratio (COX-l/COX-2) of 770 in the cell based assay. In the human whole blood assay, CJ-11668 showed COX-2 inhibition (IC50) of 370nM and selectivity ratio (COX-l/COX-2), 135. The treatment of CJ-11668 (5 mg/kg, p.o) produced a significant inhibition (35%) of inflamed rat paw volume in the carrageenan-induced acute inflammation. CJ-11668 also suppressed the PGE2 level (69% inhibition, 1 mg/kg, p.o) in the zymosan-induced mouse air pouch model after 3 hrs. (omitted)

  • PDF

Suppression of Cyclooxygenase-2 Expression of Skin Fibroblasts by Wogonin, a Plant Flavone from Scutellaria Radix

  • Chi, Yeon-Sook;Kim, Hyun-Pyo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.96-96
    • /
    • 2003
  • Previously, wogonin (5,7-dihydroxy-8-methoxyflavone) was found to suppress proinflammatory enzyme expression including cyclooxygenase-2 (COX-2), contributing to in vivo anti-inflammatory activity against skin inflammation. However, the detailed effect on each skin cell type has not been understood. Therefore, present investigation was carried out to find the effect of wogonin on inflammation-associated gene expression from skin fibroblasts in culture using reverse transcriptase-polymerase chain reaction. As a result, it was found that wogonin (10 - 100 ${\mu}$M) clearly down-regulated COX -2 expression from NIH/3T3 cells treated with 12-O-tetradecanoylphorbol 13-acetate, interleukin-1${\beta}$ or tumor necrosis factor-a. But, the expression levels of COX-1, interleukin-1${\beta}$ and fibronectin were not significantly affected. This finding was well correlated with significant reduction of prostaglandin E$_2$(PGE$_2$) production by wogonin. As a comparison, NS-398 (selective cyclooxygenase-2 inhibitor) did not suppress COX -2 expression and other gene levels, while PGE$_2$production was potently reduced at 0.1 - 10 ${\mu}$M. All these results suggest that COX -2 down-regulation of skin fibroblasts may be, at least in part, one of anti-inflammatory mechanisms of wogonin against skin inflammation.

  • PDF