• Title/Summary/Keyword: Infinite slope

Search Result 91, Processing Time 0.023 seconds

Application of infinite slope stability analysis method using GIS technique : case study of boeun area (GIS를 이용한 공간자료 적용 및 무한 사면의 안정성 해석 기법 적용 검증 : 보은지역을 중심으로)

  • 이연희;정영국;박혁진;이사로;장범수;전귀현
    • Proceedings of the KSEG Conference
    • /
    • 2003.04a
    • /
    • pp.153-158
    • /
    • 2003
  • Traditionally, the statistical methods has been used to analyze the relationship between landslide occurrence and related factors(soil depth, soil strength, slope angle, vegetation, etc.) in GIS technique. However, the method have no mechanical meaning. Therefore, the mechanical model is suggested in this research. The method analyzes the mechanical equilibrium of a potential slide block and then calculates a slope safety factor. Since this method is able to consider the balance of forces applied to the slope and is a more reasonable method for an individual site. In this research, the spatial data is obtained, managed and analyzed using GIS technique, and the infinite slope model is used to evaluate factor of safety and analyze the slope stability.

  • PDF

Effects of Drilling Degrees of Freedom in the Finite Element Modeling of P- and SV-wave Scattering Problems

  • Kim, Jae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.37-43
    • /
    • 1999
  • This paper deals with a hybrid finite element method for wave scattering problems in infinite domains. Scattering of waves involving complex geometries, in conjunction with infinite domains is modeled by introducing a mathematical boundary within which a finite element representation is employed. On the mathematical boundary, the finite element representation is matched with a known analytical solution in the infinite domain in terms of fields and their derivatives. The derivative continuity is implemented by using a slope constraint. Drilling degrees of freedom at each node of the finite element model are introduced to make the numerical model more sensitive to the transverse component of the elastodynamic field. To verify the effects of drilling degrees freedom and slope constraints individually, reflection of normally incident P and SV waves on a traction free half spaces is considered. For the P-wave incidence, the results indicate that the use of slope constraint is more effective because it suppresses artificial reflection at the mathematical boundary. For the SV-wave case, the use of drilling degrees freedom is more effective by reducing numerical error at irregular frequencies.

  • PDF

Large-Scale Slope Stability Analysis Using Climate Change Scenario (1): Methodologies (기후변화 시나리오를 이용한 광역 사면안정 해석(1): 방법론)

  • Choi, Byoung-Seub;Oh, Sung-Ryul;Lee, Kun-Hyuk;Lee, Gi-Ha;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.193-210
    • /
    • 2013
  • This study aims to assess the slope stability variation of Jeollabuk-do drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the specific catchment area concept. For this objective, we downscaled RCM data in time and space: from watershed scale to rain gauge scale in space and from monthly data to daily data in time and also developed the GIS-based infinite slope stability model based on the concept of specific catchment area to calculate spatially-distributed wetness index. For model parameterization, topographic, geologic, forestry digital map were used and model parameters were set up in format of grid cells($90m{\times}90m$). Finally, we applied the future daily rainfall data to the infinite slope stability model and then assess slope stability variation under the climate change scenario. This research consists of two papers: the first paper focuses on the methodologies of climate change scenario preparation and infinite slope stability model development.

A Study on Analytical Solution of Unsaturated Infinite Slope Stability (불포화 무한사면 안전율의 수정방정식에 대한 연구)

  • Chae, Yu-Mi;Kim, Jae-Hong;Jeong, Young-Hun;Kim, Tae-Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.5-11
    • /
    • 2018
  • In conventional analytical solutions for rainfall-induced soil slope stability, the Green-Ampt (1911) equation for estimating the saturation depth and the Skempton & DeLory (1957) equation for calculating the infinite slope shallow failure were compared with the numerical analysis to confirm the error. In the simple evaluation of the reason of soil slope instability due to rainfall using the conventional equations, there are many errors and, overestimation or underestimation of the calculation results. In this study, the equation consisting of the results obtained from infiltration analysis on unsaturated soil slope is proposed by applying the average range of the strength parameters of the granite weathered soils, and its reliability is verified by comparing with the numerical analysis results. The developed equation can be used easily in various fields for the estimation of slope safety factor by checking the rainfall duration and saturation depth.

Landslide Hazard Evaluation using Geospatial Information based on UAV and Infinite Slope Stability Model (UAV 기반의 공간정보와 무한사면해석모형을 활용한 산사태 위험도 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.161-173
    • /
    • 2015
  • The influence of climate change on rainfall patterns has triggered landslide and debris flow with casualties and property damage. This study constructed DSM and Orthophoto by using UAV surveying technique and evaluated landslide risk area by applying GIS data into the infinite slope stability model. As a result of the estimation of slope stability in a site, the slope instability has $SI{\leq}1.0$ with cover area 46,396m2, and the distribution percentage was 18.2%. The most dangerous section has $SI{\leq}0.0$ with its cover area 7,988m2, and the ratio was 0.8%. The reviews regarding the risk of landslide and debris flow risk by stability index and river channel analysis respectively help being able to designate the hazard zone due to heavy rainfall. Therefore the analysis result of this study will need to reinforce soil slope and plan their safety measures in the future.

Prediction of dynamic behavior of full-scale slope based on the reduced scale 1 g shaking table test

  • Jin, Yong;Kim, Daehyeon;Jeong, Sugeun;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.423-437
    • /
    • 2022
  • The objective of the study is to evaluate the feasibility of the dynamic behavior of slope through both 1 g shaking table test and numerical analysis. Accelerometers were installed in the slope model with different types of seismic waves. The numerical analysis (ABAQUS and DEEPSOIL) was used to simulate 1 g shaking table test at infinite boundary. Similar Acceleration-time history, Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) were obtained, which verified the feasibility of modeling using ABAQUS and DEEPSOIL under the same size. The influence of the size (1, 2, 5, 10 and 20 times larger than that used in the 1 g shaking table test) of the model used in the numerical analysis were extensively investigated. According to the similitude law, ABAQUS was used to analyze the dynamic behavior of large-scale slope model. The 5% Damping Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) at the same proportional positions were compared. Based on the comparison of numerical analyses and 1 g shaking table tests, it was found that the 1 g shaking table test result can be utilized to predict the dynamic behavior of the real scale slope through numerical analysis.

Assessment of Landslide Susceptibility using a Coupled Infinite Slope Model and Hydrologic Model in Jinbu Area, Gangwon-Do (무한사면모델과 수리학적 모델의 결합을 통한 강원도 진부지역의 산사태 취약성 분석)

  • Lee, Jung Hyun;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.697-707
    • /
    • 2012
  • The quantitative landslide susceptibility assessment methods can be divided into statistical approaches and geomechanical approaches based on the consideration of the triggering factors and landslide models. The geomechanical approach is considered as one of the most effective approaches since this approach proposes physical slope model and considers geomorphological and geomechanical properties of slope materials. Therefore, the geomechanical approaches has been used widely in landslide susceptibility analysis using the infinite slope model as physical slope model. However, the previous studies assumed constant groundwater level for broad study area without the consideration of rainfall intensity and hydraulic properties of soil materials. Therefore, in this study, landslide susceptibility assessment was implemented using the coupled infinite slope model with hydrologic model. For the analysis, geomechanical and hydrualic properties of slope materials and rainfall intensity were measured from the soil samples which were obtained from field investigation. For the practical application, the proposed approach was applied to Jinbu area, Gangwon-Do which was experienced large amount of landslides in July 2006. In order to compare to the proposed approach, the previous approach was used to analyze the landslide susceptibility using randomly selected groundwater level. Comparison of the results shows that the accuracy of the proposed method was improved with the consideration of the hydrologic model.

Viscous fluid characteristics of liquefied soils and behavior of pile subjected to flow of liquefied soils (액상화된 지반의 점성 유체 특성과 그 흐름이 말뚝의 거동에 미치는 영향 분석)

  • Hwang, Jae-Ik;Kim, Chang-Yeob;Chung, Choong-Ki;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.722-729
    • /
    • 2004
  • The horizontal movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. In this study, a virtual case is assumed in which flow liquefaction is induced by earthquake loads in a fully saturated infinite sand slope with a single pile installation. Under the assumption that the movement of liquefied ground is viscous fluid flow, the influence of ground movement due to flow liquefaction on the pile behavior was analyzed. Since the liquefied soil is assumed as a viscous fluid, its viscosity must be evaluated, and the viscosity was estimated by the dropping ball method ,md the pulling bar method. Finally, the influence of the flow of liquefied soil on a single pile installed in an infinite slope was analyzed by a numerical method.

  • PDF

Infinite Slope Stability to Analyze the Effects of Rainfall and Vertical Seismic Coefficient in Limestone Area (강우와 연직 지진계수의 영향도 분석을 위한 석회암지역의 무한사면 안정해석)

  • Moon, Seong-Woo;Kim, Hyeong-Sin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • In Korea, there are many regulations and cases for horizontal seismic coefficient to pseudo-static analysis of slope, but there are insufficient regulations and cases for vertical seismic coefficient. Therefore, geological investigation and laboratory tests were conducted to analyze the effect of the vertical seismic coefficient on slope stability, and pseudo-static analyses based on infinite slope stability analysis were performed by using those results. As a result, if the earthquake magnitude is less than M 5.0, the effect of the vertical seismic coefficient is not significant, and if the earthquake magnitude is more than M 6.0, the vertical seismic coefficient largely increases the unstable areas of Fs ≤ 1.1. These tendency is more distinct in rainfall condition than without rainfall condition.

Stability analysis of an unsaturated slope considering the suction stress (흡입응력을 고려한 불포화 사면의 안정해석법)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF