• 제목/요약/키워드: Infiltration volume

검색결과 191건 처리시간 0.029초

침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석 (Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench)

  • ;;;전민수;김이형
    • 한국습지학회지
    • /
    • 제21권4호
    • /
    • pp.384-391
    • /
    • 2019
  • 최근 강우시 수계로 유출되는 비점오염물질로 인한 수질오염의 문제를 해결하고자 저영향개발(Low Impact development, LID)을 적용하고 있다. LID 시설 중 침투도랑 (Infiltration trench, IT) 과 침투화분 (Infiltration Planter, IP) 은 높은 침투율 및 침강지를 통한 오염물질 제거와 식생을 통한 영양염류 저감효율이 높다. 따라서 본 과제에서는 장기간 모니터링을 통한 침투도랑(IT)과 침투화분(IP)의 영양염류 오염물질 제거효율에 대해 분석하였다. 침투도랑(IT)과 침투화분(IP) 두 시설 모두 TSS 약 84%, TP 약 76%이상으로 제거효율이 높은것으로 나타났는데 이는 인의 화합물과 퇴적물간의 이온교환으로 인한 것으로 나타났다. 질소의 경우 침투화분시설(IP)의 제거효율이 침투도랑(IT)에 비해 약 28% 높은것으로 분석되었다. 이는 침투도랑(IT) 내 여재와 침강지에서의 침전을 통한 입자성 질소를 제거하는데 효과적이었으며, 암모늄질소(NH4-N)와 아질산염 질소(NO2-N)의 감소 및 질소(NO3-N)의 증가는 질산화 및 탈질산화로 인한것으로 나타났다. 침투도랑(IT 모니터링 이벤트 중 강우강도가 11mm/hr로 강한 강우사상에서의 TN 및 TP의 저감효율은 각 34% 및 55%로 저감효율이 낮았으나, 5mm이하의 강우강도에서의 저감효율은 약 100%로 높은것으로 분석됬다. 반면 침투화분시설(IP)은 최대 강우강도 27mm/hr에서도 TN 및 TP의 저감효율은 97%이상으로 높은것으로 나타났다. 두 시설 모두 영양염류의 제거효율은 좋은것으로 나타났으나, 시설용량 및 HRT가 높고 시설 내 식생이 적용된 침투화분시설(IP)이 영양염류 제거효율이 더 높은것으로 분석되었다.

저수형 잔디블록 저수조 내 충진재료에 따른 저수량 및 초종별 증발산량 (Volume of Water Storage and Evapotranspiration by Inserted Materials at a Reservoir of Porous Grass Block)

  • 한승호;최준수;양근모;양병이;강진형;김원태
    • 한국조경학회지
    • /
    • 제34권5호
    • /
    • pp.76-83
    • /
    • 2006
  • The purpose of this study was to investigate the performance of porous grass block. For the investigation, Festuca arundinacea and Zoysia japonica 'Zenith' were planted, and the volume of evapotranspiration and remains were examined based on different materials in the water tank in the experiment of Festuca arundinacea, the volume of water storage of treatment with perlite ($10.84{\iota}/m^2$) was higher than that with drainage ($7l/m^2$). The difference between the two was $3.84/m^2$. The drainage treatment without water storage capacity showed the higher degree of dryness in turf grass. The volume of evapo-transpiration of treatment with perlite was the highest (21.57mm/week). The volume of evapotranspiration of treatment with sand was 19.57mm/week, and with treatment with drainage was 18.24mm/week. Based on the measured volume of daily evapotranspiration of $2.60{\sim}3.08mm\;d^{-1}$, it was determined that the unit with water storage capacity would store water of one to two days usage compared to unite without such storage capacity. In the experiment of Zoysia japonica 'Zenith', the volume of water storage of treatment with perlite was $10.77l/m^2$ which was similar to the former experiment. The volume of evapotranspiration of treatment with perlite and sand were 21.64mm/week and 20.64mm/week, respectively. In case of airtight water tank, the volume was measured as 22.06mm/week. Each treatment has no notable difference in the volume of evapotranspiration. In conclusion, from the investigation in this study, porous grass block with water tank was found to be effective in plant growth under low irrigation. As the ecological area ratio and vegetated porous pavement have became more emphasized, additional study of rain infiltration and reservoir effect are needed in the future.

강우유출수 처리를 위한 하이브리드 빗물정원 시스템의 구성요소 배열 연구 (Determination on the component arrangement of a hybrid rain garden system for effective stormwater runoff treatment)

  • ;;;김이형
    • 한국습지학회지
    • /
    • 제19권3호
    • /
    • pp.271-278
    • /
    • 2017
  • 최근 비점오염물질 처리를 위하여 저영향개발(low impact development) 기술이 적용되고 있으며, 레인가든 기술은 생물학적 및 물리화학적 처리에 의하여 비점오염물질 저감에 기여하기에 광범위하게 적용되고 있는 LID 기술 중 하나이다. 그러나 유지관리를 지속적으로 수행하지 않아 시설 내 막힘 현상 등의 문제가 발생한다. 따라서 본 연구는 효율적인 물수지 및 오염물질 저감을 위해 레인가든 기술의 구성 요소 배치의 개발 및 평가를 위하여 수행하였으며, 서로 다른 2개의 하이브리드 레인가든 시스템 구축을 통하여 시스템의 최적화된 설계 및 구성요소의 배열을 도출하였다. 분석 결과, 시스템의 구성요소를 직렬로 배열 시 저감량은 유출량의 경우 96%, 오염물질 중 입자상 물질은 99%, 유기물질은 93% 및 중금속은 95%로 나타났다. 반면 시스템이 병렬로 배열 될 시, 유출량은 65% 저감되었으며, 평균 오염물질 저감효율은 TSS는 94%, 영양물질은 80% 및 중금속은 85%으로 평가되었다. 또한, 시스템의 구성요소가 비점오염물질 저감에는 침전, 침투도랑 및 식재부의 순서가 중요한 영향인자로 나타났다. 향후 레인가든 시스템 개발 시 최적화 설계 인자로 활용 가능할 것으로 기대된다.

시범 단지 운영을 통한 LID 기법별 물순환 및 수질개선 효과 분석 (Analysis on the Water Circulation and Water Quality Improvement Effect of Low Impact Development Techniques by Test-Bed Monitoring)

  • 고혁배;최한나;이윤규;이채영
    • 한국지반환경공학회 논문집
    • /
    • 제17권5호
    • /
    • pp.27-36
    • /
    • 2016
  • 저영향개발(LID) 기법은 물순환을 고려한 친환경 도시계획기법으로 개발 이전의 물수지를 회복시키려는 빗물관리 방법이다. 본 연구에서는 도시지역에 적용 가능한 LID 기법 중 4개(침투도랑, 식생수로, 도심형 인공습지, 측구형 침투도랑)를 선정하여 실제 적용될 지역에 시범 단지를 조성하였으며, 실제 강우와 인공강우를 이용한 모니터링을 통해 각 시설의 물순환 및 수질개선 효과를 평가하였다. 다양한 강우사상에서 모니터링한 결과 LID 시설의 표면적과 유역면적비, 그리고 시설용량과 유역면적비가 클수록 모든 강우사상에서 유출이 발생하지 않았다. 또한, 식생수로와 침투도랑은 모든 강우(최대 17.2mm)에서 유출이 발생하지 않았으며, 도심형 인공습지와 측구형 침투도랑에서는 유출이 발생하였는데 도심형 인공습지는 10mm 이하의 강우에서 유출 저감율이 높았으며, 측구형 침투도랑은 10mm 이하 및 이상의 강우에서 유사하게 나타났다. LID 시설의 구조와 강우사상, 선행건기일수에 따라 차이가 있으나 LID의 적용으로 물수지 개선 및 비점오염원 물질의 저감이 가능하다.

용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질 (Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite)

  • 김민수;조경목;박익민
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의 (Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator)

  • 신민환;최용훈;서지연;이재운;최중대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

Modelling of a Base Big Data Analysis Using R Method for Selection of Suitable Vertical Farm Sites: Focusing on the Analysis of Pollutants

  • Huh, Jun-Ho;Seo, Kyungryong
    • 한국멀티미디어학회논문지
    • /
    • 제19권12호
    • /
    • pp.1970-1980
    • /
    • 2016
  • The problem of food deficiency is a major discouragement to many low-income developing countries. Most of these countries experience constant danger of hunger, malnutrition and diseases as they are unable to maintain their food supplies mainly due to lack of arable lands and modern crop, livestock and fishery production technologies. In addition, the pollutants resulting from the secondary industries are becoming another serious issue in their food problems. The pollutants mixed in the sands blowing from the mainland China and the toxic waters flowing in the farm land form the industrialized zones are some of the examples. The Vertical Farm, or Plant Factory, proposed in this study could be the best alternative food production system for them. Vertical farm is an efficient food production system that yields relatively a large volume of food materials without environmental risks. The system does not require a large open space and manpower and can minimize the possibility of infiltration of pollutants. This research describes a basic model of the system focusing on determining the optimal sites for it based on the meteorological data concentrating on the atmospheric pollutants. The types and volume of pollutants are analyzed and identified through the big data obtained, followed by visualization of analysis results and their comparisons for better understanding.

담수심 처리가 논의 증발산량에 미치는 영향 (Effects of ponding depth treatment on evapotranspiration in paddy fields)

  • 손성호;박기중;정상옥
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study was to investigate the effects of ponding depth treatment on evapotranspiration in paddy fields. Three poding depth treatments, very sallow, shallow, and deep were used. The experimental plots were three $80m{\times}8m$ rectangular plots. Daily values of rainfall amount, ponding depth, irrigation water, drainage water, evapotranspiration, and infiltration were measured in the field. The ponding depth was continuously observed by observed nstaff during the growing season. The ET was measured by 1m diameter PVC lysimeters. Irrigation water volume was measured by 75 mm pipe flow-meters and the drainage water volume by 75 mm pipe flow-meters and a recording parshall flume. The results showed that irrigation water depths were 688.9 mm, 513.6 mm, and 624.4 mm in 2001, and 356.9 mm, 428.6 mm, and 513.2 mm in 2002 in very shallow, shallow, and deep ponding, respectively. The evapotranspiration were 465.0 mm, 484.1 mm, and 415.1 mm in 2001 and 461.3 mm, 476.3 mm, and 470.6 mm in 2002 in very shallow, shallow, and deep ponding, respectively.

  • PDF

담수심처리가 논의 물수지에 미치는 영향 (The Effects of pending depth treatment on Water balance in paddy fields)

  • 손성호;정상옥
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.99-105
    • /
    • 2001
  • The purpose of this study is to investigate the effects of pending depth treatment on water balance in paddy fields. The pending depth treatments were very shallow, shallow and deep. The experimental plots were three $80m{\times}25m$ rectangular plots. Daily values of rainfall amount, pending depth, irrigation water, drainage water, evapotranspiration, infiltration, and piezometeric head were measured in the field. The pending depth was continuously observered by water level logger during the growing season. The ET was measured in 1m diameter PVC lysimeters. Irrigation water volume was measured by 75m pipe flow meter and the drainage water volume was measured by 25mm and 75mm pipe flow meters and a recording Parshall fulume. PVC pipe piezometers with 12mm diameter were used. The results of the water balance showed that irrigation water of 881.1mm, 735.4mm, and 532.6mm in very shallow, shallow, and deep pending, respectively. The effective rainfall was 182.6mm(44.6%), 254.7mm(62.2%), and 188.6mm(46.0%) in very shallow, shallow, and deep pending, respectively. The results show that the shallow pending depth looks the best of the three treatments.

  • PDF

Structure and Properties of Polymer Infiltrated Alumina Thick Film via Inkjet Printing Process

  • Jang, Hun-Woo;Koo, Eun-Hae;Hwang, Hae-Jin;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.207-207
    • /
    • 2008
  • Modern industry has focused on processing that produce low- loss dielectric substrates used complex micron-sized devices using tick film technologies such as tape casting and slip casting. However, these processes have inherent disadvantages fabricating high density interconnect with embedded passives for high speed communication electronic devices. Here, we have successfully fabricated porous alumina dielectric layer infiltrated with polymer solution by using inkjet printing process. Alumina suspensions were formulated as dielectric ink that were optimized to use in inkjet process. The layer was confirmed by field emission scanning electron microscope (FE-SEM) for measuring microstructure and volume fraction. In addition, the reaction kinetics and electrical properties were characterized by FT-IR and the impedance analyzer. The volume fraction of alumina in porous dielectric alumina layer is around 70% much higher than that in the conventional process. Furthermore, after infiltration on the dielectric layer using polymer resins such as cyanate ester. Excellent Q factors of the dielectric is about 200 when confirmed by impedance analyzer without any high temperature process.

  • PDF