• Title/Summary/Keyword: Infiltration Rate

Search Result 454, Processing Time 0.021 seconds

Studies on Neck Blast Infection of Rice Plant (벼 이삭목도열병(病)의 감염(感染)에 관(關)한 연구(硏究))

  • Kim, Hong Gi;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.206-241
    • /
    • 1985
  • Attempts to search infection period, infection speed in the tissue of neck blast of rice plant, location of inoculum source and effects of several conditions about the leaf sheath of rice plants for neck blast incidence have been made. 1. The most infectious period for neck blast incidence was the booting stage just before heading date, and most of necks have been infected during the booting stage and on heading date. But $Indica{\times}Japonica$ hybrid varieties had shown always high possibility for infection after booting stage. 2. Incubation period for neck blast of rice plants under natural conditions had rather a long period ranging from 10 to 22 days. Under artificial inoculation condition incubation period in the young panicle was shorter than in the old panicle. Panicles that emerged from the sheath of flag leaf had long incubation period, with a low infection rate and they also shown slow infection speed in the tissue. 3. Considering the incubation period of neck blast of rice plant, we assumed that the most effective application periods of chemicals are 5-10 days for immediate effective chemicals and 10-15 days for slow effective chemicals before heading. 4. Infiltration of conidia into the leaf sheath of rice plant carried out by saturation effect with water through the suture of the upper three leaves. The number of conidia observed in the leaf sheath during the booting stage were higher than those in the leaf sheath during other stages. Ligule had protected to infiltrate of conidia into the leaf sheath. 5. When conidia were infiltrated into the leaf sheath, the highest number of attached conidia was observed on the panicle base and panicle axis with hairs and degenerated panicle, which seemed to promote the infection of neck blast. 6. The lowest spore concentration for neck blast incidence was variable with rice varietal groups. $Indica{\times}Japonica$ hybrid varieties were infected easily compared to the Japonica type varieties, especially. The number of spores for neck blast incidence in $Indica{\times}Japonica$ hybrid varieties was less than 100 and disease index was higher also in $Indica{\times}Japonica$ hybrid than in Japonica type varieties. 7. Nitrogen content and silicate content were related with blast incidence in necks of rice plants in the different growing stage changed during growing period. Nitrogen content increased from booting stage to heading date and then decreased gradually as time passes. Silicate content increased from booting stage after heading with time. Change of these content promoted to increase neck blast infection. 8. Conidia moved to rice plant by ascending and desending dispersal and then attached on the rice plant. Conidia transfered horizontally was found very negligible. So we presumed that infection rate of neck blast was very low after emergence of panicle base from the leaf sheath. Also ascending air current by temperature difference between upper and lower side of rice plant seemed to increase the liberation of spores. 9. Conidial number of the blast fungus collected just before and after heading date was closely related with neck blast incidence. Lesions on three leaves from the top were closely related with neck blast incidence, because they had high potential for conidia formation of rice blast fungus and they were direct inoculum sources for neck blast. 10. The condition inside the leaf sheath was very favorable for the incidence of neck blast and the neck blast incidence in the leaf sheath increased as the level of fertilizer applied increased. Therefore, the infection rate of neck blast on the all panicle parts such as panicle base, panicle branches, spikelets, nodes, and internodes inside the leaf sheath didn't show differences due to varietal resistance or fertilizers applied. 11. Except for others among dominant species of fungi in the leaf sheath, only Gerlachia oryzae appeared to promote incidence of neck blast. It was assumed that days for heading of varieties were related with neck blast incidence.

  • PDF

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.

Research on the Methods and Proper Provisions for Rotational Irrigation (윤환관개방법과 적정시설 연구)

  • 유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2191-2205
    • /
    • 1971
  • In this research, Nong-rim No. 6 was adopted as a test variety of rice. Rice seedlings were transplanted on June 14, 1970. Roots were settled into soil on June 20 and a total number of days irrigated of $21cm{\times}21cm$ and an area of $9.9m^2$ for a test plot were accepted, planting 70 stumps of rice in a test plot. The soil in test plots are classified by soil test as oam, and its chemical contents are as shown in Table 3. Irrigation water was secured by pumping from the Sudun stream that originates at the Suho reservoir. Accordingly, the qualities of irrigation. water are considered to be the same as those of water stored in the Suho reservoir. There were 54 days of intermittent rainfalls in total during the whole 110-day period of irrigation. As a result, it is likely that the growth of rice plants was influenced by rainfall at a comparatively great degree. In order to measure the amounts of water consumption, infiltrometers, measuring devices for the decreases of water depths and lycimeters were provided. As a result of measurements, an average daily rate of infiltration was observed to be 14mm/day. It is expected from this research that the effect of increased yield will be secured by supplying optimum amounts of water for irrigation on proper times, and that the amounts of water consumption for irrigation can be saved by applying suitable irrigation methods. The test results obtained are summarized as follows: 1. Yields produced in the test plots of continuous irrigation are lower than those in the test plots of rotational irrigation, i.e., yields produced at the test plots irrigatied once in a period of 8 days are higher by 27% in average than those produced at test plots of continuous irrigation. 2. The amounts of irrigation water for test plots, which have a clay layer of 9cm in thickness and vynil diaphragm without holes, are saved by about 52% in comparison with ordinary test plots. 3. Ears are sprouted 5 days earlier at continuous irrigation plots as compared with other test plots. 4. It seems that there are growing stages of rice plants such as those of forming and sprouting of ears, in which the amounts of irrigation water are consumed more in comparison with the other stages. Therefore, it may be possible to increase of decrease the amount of irrigation water, according to the growing stage of rice plant, so as to save irrigation water.

  • PDF

A Study on Appropriate Military Strength of Unified Korea (Focused on relative balance strategy and conflict scenario) (통일 한국의 적정 군사력에 관한 연구 - 분쟁 시나리오와 상대적 균형전략을 중심으로 -)

  • Hong, Bong-Gi
    • Journal of National Security and Military Science
    • /
    • s.13
    • /
    • pp.687-738
    • /
    • 2016
  • To prepare for the complicated international relationship regarding Korean Peninsula after reunification, this thesis started off with the awareness that Unified Korea should build its international posture and national security at an early stage by determining its appropriate military strength for independent defense and military strategies that Unified Korea should aim. The main theme of this thesis is 'The research on appropriate military strength of the Unified Korean military'. To derive appropriate military strength of Unified Korea, this research focuses on conflict scenario and relative balance strategy based on potential threats posed by neighboring countries, and this is the part that differentiates this research from other researches. First of all, the main objective of the research is to decide appropriate military strength for Unified Korea to secure defense sufficiency. For this, this research will decide efficient military strategy that Unified Korea should aim. Than by presuming the most possible military conflict scenario, this research will judge the most appropriate military strength for Unified Korea to overcome the dispute. Second, after deciding appropriate military strength, this research will suggest how to operate presumed military strength in each armed force. The result of this thesis is as in the following. First, Unified Korea should aim 'relative balance strategy'. 'Relative balance strategy' is a military strategy which Unified Korea can independently secure defense sufficiency by maintaining relative balance when conflicts occur between neighboring countries. This strategy deters conflicts in advance by relative balance of power in certain time and place. Even if conflict occurs inevitably, this strategy secures initiative. Second, when analyzing neighboring countries interest and strategic environment after unification, the possibility of all-out war will be low in the Korean Peninsula because no other nation wants the Korean Peninsula to be subordinated to one single country. Therefore appropriate military strength of the Unified Korean military would be enough when Unified Korea can achieve relative balance in regional war or limited war. Third, Northeast Asia is a region where economic power and military strength is concentrated. Despite increasing mutual cooperation in the region, conflicts and competition to expand each countries influence is inherent. Japan is constantly enhancing their military strength as they aim for normal statehood. China is modernizing their military strength as they aspire to become global central nation. Russia is also enhancing their military strength in order to hold on to their past glory of Soviet Union as a world power. As a result, both in quality and quantity, the gap between military strength of Unified Korea and each neighboring countries is enlarged at an alarming rate. Especially in the field of air-sea power, arms race is occurring between each nation. Therefore Unified Korea should be equipped with appropriate military strength in order to achieve relative balance with each threats posed by neighboring countries. Fourth, the most possible conflicts between Unified Korea and neighboring countries could be summarized into four, which are Dokdo territorial dispute with Japan, Leodo jurisdictional dispute with China, territorial dispute concerning northern part of the Korea Peninsula with China and disputes regarding marine resources and sea routes with Russia. Based on those conflict scenarios, appropriate military strength for Unified Korea is as in the following. When conflict occurs with Japan regarding Dokdo, Japan is expected to put JMSDF Escort Flotilla 3, one out of four of its Japan Maritime Self-Defense Force Escort Fleet, which is based in Maizuru and JMSDF Maizuru District. To counterbalance this military strength, Unified Korea needs one task fleet, comprised with three task flotilla. In case of jurisdictional conflict with China concerning Leodo, China is expected to dispatch its North Sea fleet, one out of three of its naval fleet, which is in charge of the Yellow Sea. To response to this military action, Unified Korea needs one task fleet, comprised with three task flotilla. In case of territorial dispute concerning northern part of the Korean Peninsula with China, it is estimated that out of seven Military Region troops, China will dispatch two Military Region troops, including three Army Groups from Shenyang Military Region, where it faces boarder with the Korean Peninsula. To handle with this military strength, Unified Korea needs six corps size ground force strength, including three corps of ground forces, two operational reserve corps(maneuver corps), and one strategic reserve corps(maneuver corps). When conflict occurs with Russia regarding marine resources and sea routes, Russia is expected to send a warfare group of a size that includes two destroyers, which is part of the Pacific Fleet. In order to balance this strength, Unified Korea naval power requires one warfare group including two destroyers. Fifth, management direction for the Unified Korean military is as in the following. Regarding the ground force management, it would be most efficient to deploy troops in the border area with china for regional and counter-amphibious defense. For the defense except the border line with china, the most efficient form of force management would be maintaining strategic reserve corps. The naval force should achieve relative balance with neighboring countries when there is maritime dispute and build 'task fleet' which can independently handle long-range maritime mission. Of the three 'task fleet', one task fleet should be deployed at Jeju base to prepare for Dokdo territorial dispute and Leodo jurisdictional dispute. Also in case of regional conflict with china, one task fleet should be positioned at Yellow Sea and for regional conflict with Japan and Russia, one task fleet should be deployed at East Sea. Realistically, Unified Korea cannot possess an air force equal to neither Japan nor China in quantity. Therefore, although Unified Korea's air force might be inferior in quantity, they should possess the systematic level which Japan or China has. For this Unified Korea should build air base in island areas like Jeju Island or Ullenong Island to increase combat radius. Also to block off infiltration of enemy attack plane, air force needs to build and manage air bases near coastal areas. For landing operation forces, Marine Corps should be managed in the size of two divisions. For island defense force, which is in charge of Jeju Island, Ulleung Island, Dokdo Island and five northwestern boarder island defenses, it should be in the size of one brigade. Also for standing international peace keeping operation, it requires one brigade. Therefore Marine Corps should be organized into three divisions. The result of the research yields a few policy implications when building appropriate military strength for Unified Korea. First, Unified Korea requires lower number of ground troops compared to that of current ROK(Republic of Korea) force. Second, air-sea forces should be drastically reinforced. Third, appropriate military strength of the Unified Korean military should be based on current ROK military system. Forth, building appropriate military strength for Unified Korea should start from today, not after reunification. Because of this, South Korea should build a military power that can simultaneously prepare for current North Korea's provocations and future threats from neighboring countries after reunification. The core of this research is to decide appropriate military strength for Unified Korea to realize relative balance that will ensure defense sufficiency from neighboring countries threats. In other words, this research should precisely be aware of threats posed by neighboring countries and decide minimum level of military strength that could realize relative balance in conflict situation. Moreover this research will show the path for building appropriate military strength in each armed force.

  • PDF