• Title/Summary/Keyword: Infilled concrete

Search Result 156, Processing Time 0.021 seconds

New Technique of Earthquake Resistant Performance of Reinforced Concrete Infilled Shear Wall using New Materials and Advanced Detailing (신소재 및 성능개선 디테일을 활용한 철근콘크리트 골조면내 전단벽의 내진성능 개선기술)

  • Ha, Gee-Joo;Shin, Jong-Hak;Kim, Yun-Yong;Yang, Seung-Hyeok;Hong, Kun-Ho;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.202-205
    • /
    • 2006
  • Three reinforced concrete shear wall and infilled shear wall using retrofitting system were constructed and tested under both vertical and cyclic loadings, Experimental programs were carried out to evaluate and improve the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeled in one-third scale size. For specimens(RWAHC, RWXHC) designed by the improving of seismic performance using the high ductile fiber composite mortar, anchoring, and advanced detailing system for the reinforced concrete shear wall load-carrying capacities were increased $1.1{\sim}1.22$ times in comparison with the standard specimen(SRW).

  • PDF

Studies on two bay and three storey infilled frame with different interface materials: Experimental and finite element studies

  • Muthukumar, S.;Satyanarayanan, K.S.;Senthil, K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.543-555
    • /
    • 2017
  • The non-linear behaviour of integral infilled frames (in which the infill and the frame are bonded together with help of various interface materials) is studied both experimentally and numerically. The experiments were carried out on one-sixth scale two-bay and three-storey reinforced concrete frames with and without infill against static cyclic loading. Three interface materials - cement mortar, cork and foam have been used in between the infill and the frame. The infill, interface and the frame are bonded together is called integral frame. The linear and non-linear behaviors of two dimensional bare frame and integral infilled frame have been studied numerically using the commercial finite element software SAP 2000. Linear finite element analysis has been carried out to quantify the effect of various interface materials on the infilled frames with various combinations of 21 cases and the results compared. The modified configuration that used all three interface materials offered better resistance above others. Therefore, the experiments were limited to this modified infilled frame case configuration, in addition to conventional (A1-integral infilled frame with cement mortar as interface) and bare frame (A0-No infill). The results have been compared with the numerical results done initially. It is found that stiffness of bare frame increased by infilling and the strength of modified frame increased by 20% compare to bare frame. The ductility ratio of modified infilled frame was 42% more than that of the conventional infilled frame. In general, the numerical result was found to be in good agreement with experimental results for initial crack load, ultimate load and deformed pattern of infill.

Seismic performance of gravity-load designed concrete frames infilled with low-strength masonry

  • Siddiqui, Umair A.;Sucuoglu, Haluk;Yakut, Ahmet
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.19-35
    • /
    • 2015
  • This study compares the seismic performances of two reinforced concrete frame specimens tested by the pseudo-dynamic procedure. The pair of 3-storey, 3-bay frames specimens are constructed with typical characteristics of older construction which is lacking seismic design. One of the specimens is a bare frame while the other is infilled with low-strength autoclave aerated concrete (AAC) block masonry. The focus of this study is to investigate the influence of low strength masonry infill walls on the seismic response of older RC frames designed for gravity loads. It is found that the presence of weak infill walls considerably reduce deformations and damage in the upper stories while their influence at the critical ground story is not all that positive. Infill walls tend to localize damage at the critical story due to a peculiar frame-infill interaction, and impose larger internal force and deformation demands on the columns and beams bounding the infills. Therefore the general belief in earthquake engineering that infills develop a second line of defence against lateral forces in seismically deficient frames is nullified in case of low-strength infill walls in the presented experimental research.

An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure (CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구)

  • Lee Jang-Hwan;Hwang Byoung-jun;Kim Je-Sub;Jung Keun-Ho;Lim Nam-Ki;Jung Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

Shaking Table Test of a 1/5 Scale 3-Story Nonductile infilled Reinforced Concrete Frame (조적채움벽이 있는 1/5 축소 3층 비연성 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.541-546
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA`s) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period of the model.

  • PDF

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame (조적채움벽 골조의 내진성능평가를 위한 등가 스트럿 모델의 비교연구)

  • Yu, EunJong;Kim, MinJae;Jung, DaeGye
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Masonry-infilled walls have been used in reinforced concrete(RC) frame structures as interior and exterior partition walls. Since these walls are considered as nonstructural elements, they were only considered as additional mass. However, infill walls tend to interact with the structure's overall strength, rigidity, and energy dissipation. Infill walls have been analyzed by finite element method or transposed as equivalent strut model. The equivalent strut model is a typical method to evaluate masonry-infilled structure to avoid the burden of complex finite element model. This study compares different strut models to identify their properties and applicability with regard to the characteristics of the structure and various material models.

Analysis of behavior of bare and in-filled RC frames subjected to quasi static loading

  • Sandhu, Balvir;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.381-395
    • /
    • 2020
  • Study on the inelastic response of bare and masonry infilled Reinforced Concrete (RC) frames repaired using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi- static loading is presented in the work. The hysteresis behaviour, stiffness retention, energy dissipation and damage index are the parameters employed to analyze the efficacy of FRP strengthening of bare and brick in-filled RC frames. It is observed that there is a significant improvement in load carrying capacity of brick infilled frame over bare RC frame. Also FRP strengthened brick infilled frame performs much better than FRP repaired bare frame under quasi static loading. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

A Study on the Strength Evaluation of Rectangular Steel Tubular Columns Infilled with High Strength Concrete (고강도콘크리트 충전 각형강관기둥의 내력평가에 관한 연구)

  • Shim, Jong Seok;Han, Duck Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2011
  • The CFT columns used in thin-walled steel tubes can be more economical, because it was expected the increase of strength by restriction for the local buckling of steel tubes. The purpose of this paper is to review feasibility of existing design formula and verify the applicability limit of width-to-thickness ratio for increasing the strength of rectangular CFT columns. As the main parameters of experiments, width-to-thickness ratios of steel tube, height of rectangular concrete columns, and concrete filled or not. The strength of concrete are selected to 90MPa. From the test results, the confinement effect of steel tube on the compressive strength of infilled concrete is remarkably appeared in the thin-walled rectangular steel tube columns infilled wih high strength concrete. By the non-linear analysis, the axial strength from experiment result was given higher than analysis result for all CFT stub columns.

Seismic Performance Evaluation of Hexagonal Blocks Infilled RC Frames (육각형 블록을 이용한 채움벽 RC 골조의 채움벽 내진성능평가)

  • Chang, Kug Kwan;Seo, Dae Won;Ko, Tae Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.116-124
    • /
    • 2011
  • RC frames with unreinforced masonry infiledl walls are common in worldwide. Since infilled walls are normally considered as non-structural elements, their presence is often ignored by engineers. In this study, to improve the seismic performance of masonry walls, hexagonal block was developed and the influence of masonry infilled wall on the seismic performance of reinforced concrete(RC) frames that were designed in accordance with current code provisions without the consideration of earthquake loadings are investigated. Two 1/2 scale, single story, single bay, frame specimens were tested. The parameters investigated included that the strength of infilled wallls with respect to that of the lateral load history. The experimental results indicate that infilled walls can significantly improve the lateral stiffness and strength of RC frames. The lateral loads developed by the infilled frame specimen is higher than that of the bare frame. It also indicates that infilled walls can be potentially used to improve the performance of existing nonductile frames. For this purpose. methods should be developed to avoid irreparable damage and catastrophic failure.