• 제목/요약/키워드: Infill

검색결과 323건 처리시간 1.442초

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

강판벽이 설치된 건물의 연쇄붕괴 저항성능 (Progressive Collapse Resisting Capacity of Building Structures with Infill Steel Panels)

  • 이하나;권광호;김진구
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.19-26
    • /
    • 2012
  • 본 논문에서는 강판벽이 설치된 골조 구조물의 연쇄붕괴 거동을 비선형 정적 pushdown 해석을 이용하여 평가하였다. 해석모델은 중력하중에 대해서 설계된 2층 2경간 철골구조물이며, 중앙 기둥을 제거하고 하중을 서서히 증가시키며 하중-변위 관계를 구하였다. 구조물의 전체적인 거동뿐만 아니라 부분적인 응력과 변형을 파악하기 위하여 ABAQUS를 이용한 유한요소해석을 수행하였다. 해석을 통해서 구조물의 경간 길이 및 설치된 강판의 두께의 변화에 따른 연쇄붕괴 거동을 평가하였으며, 샛기둥을 이용하여 강판을 분할하고 분할된 강판의 위치에 따른 연쇄붕괴 성능의 변화를 관찰하였다. 해석결과에 따르면 경간의 길이가 증가할수록 연쇄붕괴를 방지하기 위하여 요구되는 강판의 두께 또한 증가하며, 분할된 강판의 수가 증가할수록 연쇄붕괴에 대한 저항성능이 약간 증가하지만 그 영향은 그리 크지 않은 것으로 나타났다. 또한 개구부로 인하여 일부 경간에만 강판이 설치된 경우에도 연쇄붕괴 저항성능이 어느 정도 증가하는 것으로 나타났다.

Evaluation of seismic response of soft-storey infilled frames

  • Santhi, M. Helen;Knight, G.M. Samuel;Muthumani, K.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.423-437
    • /
    • 2005
  • In this study two single-bay, three-storey space frames, one with brick masonry infill in the second and third floors representing a soft-storey frame and the other without infill were designed and their 1:3 scale models were constructed according to non-seismic detailing and the similitude law. The models were excited with an intensity of earthquake motion as specified in the form of response spectrum in Indian seismic code IS 1893-2002 using a shake table. The seismic responses of the soft-storey frame such as fundamental frequency, mode shape, base shear and stiffness were compared with that of the bare frame. It was observed that the presence of open ground floor in the soft-storey infilled frame reduced the natural frequency by 30%. The shear demand in the soft-storey frame was found to be more than two and a half times greater than that in the bare frame. From the mode shape it was found that, the bare frame vibrated in the flexure mode whereas the soft-storey frame vibrated in the shear mode. The frames were tested to failure and the damaged soft-storey frame was retrofitted with concrete jacketing and, subjected to same earthquake motions as the original frames. Pushover analysis was carried out using the software package SAP 2000 to validate the test results. The performance point was obtained for all the frames under study, therefore the frames were found to be adequate for gravity loads and moderate earthquakes. It was concluded that the global nonlinear seismic response of reinforced concrete frames with masonry infill can be adequately simulated using static nonlinear pushover analysis.

뉴욕시 NYCHA 인필개발에 대한 분석적 고찰 -주거저렴성 및 사회적 건전성 확보를 중심으로- (A Study on NYCHA Infill Development in NYC -Focusing on the Housing Affordability & Social Soundness-)

  • 이우형
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.228-235
    • /
    • 2016
  • 국내 주요 대도시는 도심지 내 고비용의 지가와 개발가능부지의 부족으로 기존 대규모 택지공급방식에 대한 대안의 필요성에 직면하고 있다. 또한 높은 주택수요와 부족한 공급량에 대한 대응으로 적정가격의 주택을 공급하고 관련 주택기관의 재정적 안정성을 동시에 고민하고 있다. 특히 공공부문은 최근 획일적 공공임대주택의 공급에서 탈피하여 소득 및 수요계층에 부합하는 다양한 형태의 임대주택 공급을 시도하고 있다. 본 연구가 주목하는 NYCHA(New York City Housing Authority) 인필개발(Infill Development)은 뉴욕시의 거시적인 주거정책인 "Next Generation NYCHA"에 포함된 세부 실행사업이며 이러한 국내 상황과 동일한 맥락적 상황에 대한 대응이다. 이는 공공부문의 주도적 역할을 통해 기존 문제적 공공주택단지의 유휴부지 개발을 통하여 주택공급량을 확대함으로 서민을 위한 주거저렴성 확보와 동시에 만성적 적자에 허덕이는 뉴욕시 주택공사의 재정상태 강화를 목적으로 한다. 나아가 이 사업을 통해 주변지역으로 부터 고립되어 다양한 사회-경제적 문제점이 노출되는 공공주택단지에 대한 해결방안을 함께 모색한다. 이에 본 연구는 현재 뉴욕시에서 추진 중인 관련 개발사례에 대한 진행과정, 다양한 비평, 세부적 내용을 분석함을 통해 국내에 참조가능한 시사점을 도출하고, 나아가 국내 공공주택 공급확대를 위한 다양한 사업방식의 개발에 일조하고자 한다.

Cyclic behaviour of infilled steel frames with different beam-to-column connection types

  • Sakr, Mohammed A.;Eladly, Mohammed M.;Khalifa, Tarek;El-Khoriby, Saher
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.443-456
    • /
    • 2019
  • Although numerous researchers demonstrated the significant difference in performance between the various beam-to-column connection types, most of the previous studies in the area of infilled steel frames focused on the behaviour of frames with welded connections. Therefore, there is a need for conducting studies on infilled steel frames with other common connection types (extended endplate with and without rib stiffeners, flush endplate and shear connections). In this paper, firstly, a two-dimensional finite-element model simulating the cyclic response of infilled steel frames was presented. The infill-frame interaction, as well as the interactions between connections' components, were properly modelled. Using the previously-validated model, a parametric study on infilled steel frames with five different beam-to-column connection types, under cyclic loading, was carried out. Several parameters, including infill material, fracture energy of masonry and infill thickness, were investigated. The results showed that the infilled frames with welded connections had the highest initial stiffness and load-carrying capacity. However, the infilled frames with extended endplate connections (without rib stiffeners) showed the greatest energy dissipation capacity and about 96% of the load-carrying capacity of frames with welded connections which indicates that this type of connection could have the best performance among the studied connection types. Finally, a simplified analytical model for estimating the stiffness and strength of infilled steel frames (with different beam-to-column connection types) subjected to lateral cyclic loading, was suggested.

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

3D Infill을 활용한 PC모듈러 시공시스템 개발 (Development of PC modular Construction System using 3D Infill)

  • 정준수;임석호;허병욱;채지용;박진호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.14-15
    • /
    • 2020
  • The need for off-site construction has increased in the construction industry in Korea in recent years due to the enforcement of the 52-hour workweek, the increasing age of workers on construction sites, the deepening dependence on overseas workers, and the stagnation of productivity in the construction industry. Thus, studies on OSC started in April 2020. In addition, as a national policy study advocating the modular construction method, which is one of the OSC methods, was completed in the first half of 2019. 70 housing units in two complexes that satisfied the Housing Act requirements have been supplied to citizens. However, although modular construction methods have been recognized as a dramatic construction method that achieves shortened construction schedules and solves the issues of cost reduction and the shortage of technical workers on sites by combining the advantages of the manufacturing industry and applying the economies of scale, realistically it has issues due to the rising cost of steel and a low pre-fabrication ratio. Moreover, the construction time of core parts, such as those built by pouring concrete, has become a factor that hinders the shortening of construction times. Thus, this study aims to propose a precast concrete(PC) modular construction system, which fuses three-dimensional infill as an interior finish material and a three-surface PC module that can acts as a structure for a construction method that is economical and can shorten construction time.

  • PDF

보강상세에 따른 프리캐스트 변형경화형 시멘트 복합체 끼움벽의 내진성능 (Effect of Reinforcement details on the Seismic Performance of Precast Strain-Hardening Cementitious Composite(SHCC) Infill Walls)

  • 김선우;윤현도;송선화;윤여진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.209-216
    • /
    • 2009
  • 비내진상세 골조는 낮은 횡저항성을 가지고 있어 큰 변형을 경험하게 되는 반면, 벽체는 높은 강성으로 인해 낮은 변형에서도 전단에 의해 파괴된다. 따라서 이러한 골조와 벽체가 동시에 거동할 경우 발생하는 거동 특성은 개개 부재에서의 거동특성과 매우 다르게 된다. 본 연구에서는 끼움벽에 노치를 둘 경우 내진거동특성을 평가하고자 배근상세를 변수로 하였다. 이 때 노치로 인해 벽체 중앙부에 손상이 집중되는 것을 방지하기 위하여 변형경화형 시멘트 복합체(SHCC)를 사용하였다. 실험결과, SHCC 끼움벽은 다수의 미세균열을 형성하였으나, 대각보강근을 갖는 PIW-ND 실험체가 PIW-NC 실험체에 비해 낮은 변형능력, 강성 및 에너지소산능력을 보였다.

Influence of infill panels on an irregular RC building designed according to seismic codes

  • Ercolino, Marianna;Ricci, Paolo;Magliulo, Gennaro;Verderame, Gerardo M.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.261-291
    • /
    • 2016
  • This paper deals with the seismic assessment of a real RC frame building located in Italy, designed according to the current Italian seismic code. The first part of the paper deals with the calibration of the structural model of the investigated building. The results of an in-situ dynamic identification test are employed in a sensitivity and parametric study in order to find the best fit model in terms of frequencies and modal shapes. In the second part, the safety of the structure is evaluated by means of nonlinear static analyses, taking into account the results of the previous dynamic study. In order to investigate the influence of the infills on the seismic response of the structure, the nonlinear static analyses are performed both neglecting and taking into account the infill panels. The infill panels differently change the behavior of the structure in terms of strength and stiffness at different seismic intensity levels. The assessment study also verifies the absence of brittle failures in structural elements, which could be caused by either the local interaction with infills or the failure of the strength hierarchy.