• Title/Summary/Keyword: Inference and learning

Search Result 546, Processing Time 0.031 seconds

Learning and inference of fuzzy inference system with fuzzy neural network (퍼지 신경망을 이용한 퍼지 추론 시스템의 학습 및 추론)

  • 장대식;최형일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.118-130
    • /
    • 1996
  • Fuzzy inference is very useful in expressing ambiguous problems quantitatively and solving them. But like the most of the knowledge based inference systems. It has many difficulties in constructing rules and no learning capability is available. In this paper, we proposed a fuzzy inference system based on fuzy associative memory to solve such problems. The inference system proposed in this paper is mainly composed of learning phase and inference phase. In the learning phase, the system initializes it's basic structure by determining fuzzy membership functions, and constructs fuzzy rules in the form of weights using learning function of fuzzy associative memory. In the inference phase, the system conducts actual inference using the constructed fuzzy rules. We applied the fuzzy inference system proposed in this paper to a pattern classification problem and show the results in the experiment.

  • PDF

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

A Label Inference Algorithm Considering Vertex Importance in Semi-Supervised Learning (준지도 학습에서 꼭지점 중요도를 고려한 레이블 추론)

  • Oh, Byonghwa;Yang, Jihoon;Lee, Hyun-Jin
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1561-1567
    • /
    • 2015
  • Abstract Semi-supervised learning is an area in machine learning that employs both labeled and unlabeled data in order to train a model and has the potential to improve prediction performance compared to supervised learning. Graph-based semi-supervised learning has recently come into focus with two phases: graph construction, which converts the input data into a graph, and label inference, which predicts the appropriate labels for unlabeled data using the constructed graph. The inference is based on the smoothness assumption feature of semi-supervised learning. In this study, we propose an enhanced label inference algorithm by incorporating the importance of each vertex. In addition, we prove the convergence of the suggested algorithm and verify its excellence.

Fuzzy Inference System for the Synthesis Learning Evaluation (종합학습평가를 위한 퍼지추론 시스템)

  • Son, Chang-Sik;Kim, Jong-Uk;Jeong, Gu-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.742-746
    • /
    • 2006
  • Evaluation of learning ability of students is classified a step of diagnostic, formative and summative evaluation. This step-by-step evaluation is the standard of synthesis judgement, from a student's prior learning of preparation state to devotion of learning process and even learning result. In this paper, we propose the method of synthesis learning evaluation which is considered evaluation of each step in using fuzzy inference. In order to get objective evaluation of learning ability, we applied to the weights by evaluation steps. And we reflected defuzzification values of final evaluation membership function interval obtained by fuzzy inference about diagnostic, formative and summative evaluation. As a result, it processes definite inference ensures objectivity and shows validity of the synthesis evaluation method.

Self-Organized Reinforcement Learning Using Fuzzy Inference for Stochastic Gradient Ascent Method

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.3-96
    • /
    • 2001
  • In this paper the self-organized and fuzzy inference used stochastic gradient ascent method is proposed. Fuzzy rule and fuzzy set increase as occasion demands autonomously according to the observation information. And two rules(or two fuzzy sets)becoming to be similar each other as progress of learning are unified. This unification causes the reduction of a number of parameters and learning time. Using fuzzy inference and making a rule with an appropriate state division, our proposed method makes it possible to construct a robust reinforcement learning system.

  • PDF

Reactive Learning Inference System Considering Emotional Factor (감정적 요소를 고려한 반응학습 추론 시스템)

  • 심정연
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1107-1111
    • /
    • 2004
  • As an information technology is developed, more intelligent system considering emotional factor for implementing the personality is required. In this paper, Reactive Learning Inference System considering emotional factor is proposed. Emotional Facter(E) is defined for a criterion for representing the personal preference. This system is designed to have functions of Reactive filtering by Emotional factor, Incremental learning, perception & inference and knowledge retrieval. This system is applied to the area for analysis of customer's tastes and its performance is analyzed and compared.

A Suggestion for a Creative Teaching-learning Program for Gifted Science Students Using Abductive Inference Strategies (귀추 추리 전략을 통한 과학영재를 위한 창의적 교수-학습 프로그램의 제안)

  • Oh, Jun-Young;Kim, Sang-Su;Kang, Yong-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.786-795
    • /
    • 2008
  • The purpose of this research is to propose a program for teaching and learning effective problem-solving for gifted students based on abductive inference. The role of abductive inference is important for scientific discoveries and creative inferences in problem-solving processes. The characteristics of creativity and abductive inference were investigated, and the following were discussed: (a) a suggestion for a new program based on abductive inference for creative outcomes, this program largely consists of two phases: generative hypotheses and confirmative hypotheses, (b) a survey of the validity of a program. It is typical that hypotheses are confirmed in phases through experiments based on hypothetic deductive methodology. However, because generative hypotheses of this hypothetic deductive methodology are not manifest, we maintained that abductive inference strategies must be used in a Creative Teaching-learning Program for gifted science students.

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF

인지발달에 근거를 둔 수학학습 유형 탐색

  • 박성태
    • The Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.17-63
    • /
    • 1995
  • The exploration of Mathematics-learningmodel on the basis of Cognitive development The purpose of this paper is to sequenctialize Mathematics-learning contents, and to explore teaching-learning model for mathematics, with on the basis of the theory of cognitive development and the period of condservation formation for children. The Specific topics are as follows: (1) Systemizing those theories of cognitive development which are related to Mathematics - learning for children. (2) Organizing a sequence of Mathematics - learning, on the basis of experimental research for the period of conservation formation for children. (3) Comparing the effects of 4 types of teaching - learning model, on the basis of inference activity and operational learning principle. $\circled1$ Induction-operation(IO) $\circled2$ Induction-explanation(IE) $\circled3$ Deduction-operation(DO) $\circled4$ Deduction-explanation(DE) The results of the subjects are as follows: (1) Cognitive development theory and Mathe-matics education. $\circled1$ Congnitive development can be achieved by constant space and Mathematics know-ledge is obtained by the interaction of experience and reason. $\circled2$ The stages of congnitive development for children form a hierarchical system, its function has a continuity and acts orderly. Therefore we need to apply cognitive development for children to teach mathematics systematically and orderly. (2) Sequence of mathematical concepts. $\circled1$ The learning effect of mathematical concepts occurs when this coincides with the period of conservation formation for children. $\circled2$ Mathematics Curriculum of Elementary Schools in Korea matches with the experimental research about the period of Piaget's conservation formation. (3) Exploration of a teaching-learning model for mathematics. $\circled1$ Mathematics learning is to be centered on learning by experience such as observation, operation, experiment and actual measurement. $\circled2$ Mathematical learning has better results in from inductional inference rather than deductional inference, and from operational inference rather than explanatory inference.

  • PDF

Ontology Mapping and Rule-Based Inference for Learning Resource Integration

  • Jetinai, Kotchakorn;Arch-int, Ngamnij;Arch-int, Somjit
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • With the increasing demand for interoperability among existing learning resource systems in order to enable the sharing of learning resources, such resources need to be annotated with ontologies that use different metadata standards. These different ontologies must be reconciled through ontology mediation, so as to cope with information heterogeneity problems, such as semantic and structural conflicts. In this paper, we propose an ontology-mapping technique using Semantic Web Rule Language (SWRL) to generate semantic mapping rules that integrate learning resources from different systems and that cope with semantic and structural conflicts. Reasoning rules are defined to support a semantic search for heterogeneous learning resources, which are deduced by rule-based inference. Experimental results demonstrate that the proposed approach enables the integration of learning resources originating from multiple sources and helps users to search across heterogeneous learning resource systems.