• Title/Summary/Keyword: Infant simulator

Search Result 2, Processing Time 0.013 seconds

Development of Non-contact Home Monitoring System for Infant Respiration to Prevent SIDS (영아 돌연사 방지를 위한 비접촉 방식의 가정용 영아 호흡 감시 시스템 개발)

  • Heo, Il-Kang;Myoung, Hyoun-Seok;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.48-53
    • /
    • 2015
  • Sudden infant death syndrome(SIDS) continues to be general cause of infant death. Also, apnea is supposed to be one of the main risk factor of SIDS. Therefore, Infant's respiratory monitoring and real-time apnea detection is very important to prevent SIDS. In this study, we proposed a non-contact home monitoring system for infant's respiration using Doppler radar in order to prevent SIDS. The respiration data were acquired from a commercialized baby simulator(Simbaby$^{TM}$) using a Doppler radar. To evaluate a performance of the proposed system, the simulator was placed in a supine and prone position and the chest belt was used simultaneously as a reference signal. As a result, correlation coefficients between respiration rates of Doppler radar and the chest belt in each position were 0.95(p < 0.001) and 0.98(p < 0.001), respectively. The averages of difference were $-0.29{\pm}5.21(mean{\pm}1.96{\cdot}$ standard deviation) in supine and $-0.12{\pm}3.05$ in prone from Bland-Altman analysis. The results indicated an excellent performance in detecting apnea with a sensitivity of 100% and a positive predictive value of 100% in each posture respectively. These results demonstrated that a proposed Doppler radar system is suitable for non-contact respiratory monitoring in order to prevent SIDS of infant.

Design of Unconstrained Baby Monitoring System Based on a Doppler Radar and an Air Mattress (도플러 레이더와 에어 매트리스를 이용한 무구속 방식의 신생아 감시 장치 설계)

  • Yang, Seong-Soo;Cho, Sung-Pil;Park, Ho-Dong;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.177-184
    • /
    • 2014
  • Continuous monitoring of heart rates and respiratory rates for newborns or infants is very important since the abnormal breathing and heart problems can threaten the life of newborns or infants. A noncontact baby monitoring system based on a Doppler radar and an air mattress was designed. The Doppler radar was used to acquire respiratory signals and the air mattress was employed to obtain heart rates. The performance of the designed system was evaluated using a commercialized infant simulator ($Simbaby^{TM}$) and a respiration belt transducer was used to measure respiration rates as a reference. Results for respiratory rates revealed that the correlation coefficients between I-and Q-channel and the respiration belt were 0.84 and 0.91 and the mean ${\pm}$ standard deviations of errors between them were $1.66{\pm}1.92$ (bpm) and $0.88{\pm}1.65$ (bpm). Heart rates showed that the correlation coefficient between air mattress and set value of the simulator was 0.73 and the mean ${\pm}$ standard deviation of errors between them was $1.09{\pm}3.45$ (bpm). These results indicate that the designed system holds the potential as an effective monitoring tool for continuous monitoring heart rates and respiratory rates of newborns or infants.