• 제목/요약/키워드: Inertial dynamic effect

검색결과 40건 처리시간 0.026초

IDENTIFICATINO OF DYNAMIC PARAMETER OF THE RUBBER CRAVLES SYSTEM FOR FARM MACHINERY

  • Inoue, Eiji;Konya, Hideyuki;Hirai, Yasumaru;Noguchi, Ryozo;Hashiguchi, Koichi;Choe, Jung-Seob
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.146-153
    • /
    • 2000
  • The rubber crawler system for farm machine is composed of driving units such as track rollers, driving sprockets and rubber crawlers. Vibration characteristics of the rubber crawler system varies by driving speed, center of gravity, mass□moment of inertial□location arrangement of track rollers and dynamic parameters such as dynamic spring constant (k) and viscous damping coefficient (c) of a rubber crawler. In general, vibration of the rubber crawler system occurs by reason for mechanical interaction between the rubber crawler and track rollers. Because the dynamic spring constant and viscous damping coefficient vary periodically by mechanical characteristics(deformation characteristics) of the rubber crawler when track rollers drive on the between lugs of the rubber crawler. Therefore, both dynamic parameters k and c were expressed as Fourier series by authors through the shaking test of the rubber crawler and further, vibration characteristics of the rubber crawler system could be simulated analytically. However, actual values of dynamic parameters k and c are different from those obtained by the shaking test because dynamic characteristics of the rubber crawler vary by the effect of variable tension and driving resistance of track rollers. So, actual values of k and c should be identified in the condition of actual driving test. In this study, dynamic parameters such as k and c of the rubber crawler system, which are expressed as Fourier series, were identified using the Gauss-Newton Method. Therefore, validity of identified parameters k and c was discussed through the simulation using experimental data of actual driving test. As a result, in the Fourier series of dynamic parameters of spring constant k and viscous damping coefficient c, excellent parameter convergence and simulation were observed using the Fourier series' zero order and first term of the dynamic model. Furthermore, it was clarified that identification for model parameters which are fitted to actual dynamic motion (vibration) wave of the crawler system was possible by using the time series data observed in vertical and pitching motion of the crawler system.

  • PDF

고효율을 위한 단일 실린더를 가진 점성구동 마이크로펌프의 최적설계 (Optimum Design of a Viscous-driven Micropump with Single Rotating Cylinder for Maximizing Efficiency)

  • 최형일;김종민;최동훈;맹주성
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1889-1896
    • /
    • 2003
  • In the microfluidic applications, viscous-driven pumping mechanism is a promising one since the viscous effect increases significantly as the size of device decreases, relative to the inertial effect. However, there exist a few drawbacks we have to improve such as low efficiency and small volume flow rate. In the present study, an optimum design synthesis is proposed to enhance the performance characteristics of the micropump with single rotating cylinder. First, the unstructured grid CFD method is described and validated by comparing its results to the previous results. Next, an automated optimum design synthesis tool is constructed by combining the aforementioned CFD analysis model with the mathematical optimization model. This technique is used to improve the performance characteristics of newly designed viscous-driven pump. The presented results show that the fluid dynamic optimization tool is robust and may be applied to other microfluidic device design applications.

Improved modeling of equivalent static loads on wind turbine towers

  • Gong, Kuangmin;Chen, Xinzhong
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.609-622
    • /
    • 2015
  • This study presents a dynamic response analysis of operational and parked wind turbines in order to gain better understanding of the roles of wind loads on turbine blades and tower in the generation of turbine response. The results show that the wind load on the tower has a negligible effect on the blade responses of both operational and parked turbines. Its effect on the tower response is also negligible for operational turbine, but is significant for parked turbine. The tower extreme responses due to the wind loads on blades and tower of parked turbine can be estimated separately and then combined for the estimation of total tower extreme response. In current wind turbine design practice, the tower extreme response due to the wind loads on blades is often represented as a static response under an equivalent static load in terms of a concentrated force and a moment at the tower top. This study presents an improved equivalent static load model with additional distributed inertial force on tower, and introduces the square-root-of-sum-square combination rule, which is shown to provide a better prediction of tower extreme response.

Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge

  • Dhar, Sreya;Ozcebe, Ali Guney;Dasgupta, Kaustubh;Petrini, Lorenza;Paolucci, Roberto
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.373-385
    • /
    • 2019
  • In this article, different frequently adopted modeling aspects of linear and nonlinear dynamic soil-structure interaction (SSI) are studied on a pile-supported integral abutment bridge structure using the open-source platform OpenSees (McKenna et al. 2000, Mazzoni et al. 2007, McKenna and Fenves 2008) for a 2D domain. Analyzed approaches are as follows: (i) free field input at the base of fixed base bridge; (ii) SSI input at the base of fixed base bridge; (iii) SSI model with two dimensional quadrilateral soil elements interacting with bridge and incident input motion propagating upwards at model bottom boundary (with and without considering the effect of abutment backfill response); (iv) simplified SSI model by idealizing the interaction between structural and soil elements through nonlinear springs (with and without considering the effect of abutment backfill response). Salient conclusions of this paper include: (i) free-field motions may differ significantly from those computed at the base of the bridge foundations, thus put a significant bias on the inertial component of SSI; (ii) conventional modeling of SSI through series of soil springs and dashpot system seems to stay on the safer side under dynamic conditions when one considers the seismic actions on the structure by considering a fully coupled SSI model; (iii) consideration of abutment-backfill in the SSI model positively affects the general response of the bridge, as a result of large passive resistance that may develop behind the abutments.

DPF의 유동특성에 관한 과도해석 연구 (Study on Transient Analysis for Flow Characteristics in DPF)

  • 신동원;윤천석
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석 (Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect)

  • 박원석
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.309-316
    • /
    • 2022
  • 이 논문에서는 이동하는 질량체의 연직 방향에 대한 관성 효과를 고려하여 보의 진동을 해석할 수 있는 유한요소해석 방법을 제안한다. 제안하는 방법은 정밀한 상호작용 해석을 요하지 않는 경우에 계산의 효율성을 높이는 방법으로서, 이동하는 질량체의 관성 효과를 운동방정식에 연계시키고 질량체와 보의 상호작용력은 외부 하중으로만 고려한다. 범용 유한요소해석 소프트웨어인 Abaqus를 이용하여 시간 영역 해석을 수행하고 보의 절점과 이동하는 강체 질량의 절점 변위를 다지점 구속조건으로 연계하여 해석하는 방법을 제시하였다. 기존 해석적 방법에 의한 해와 비교하여 제안하는 방법을 검증하고 보행하중 모델을 이용한 이동 보행 하중해석에서 보행자의 질량 효과를 살펴보기 위한 간단한 연속 보 모델에 대한 해석 결과를 제시하였다.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part Ι: basic formulation and linear HFTD

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • 제6권6호
    • /
    • pp.517-530
    • /
    • 2014
  • Seismic ground response analysis is one of the most important issues in geotechnical earthquake engineering. Conventional seismic site response and free field analysis of layered soils does not consider the effect of surcharge mass which may be present on the top layer. Surcharge mass may develop extra inertial force to the soil and, hence, significantly affect on the results of seismic ground response analysis. Methods of analysis of ground response may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soil dynamic properties dependency to loading frequency are benefits of frequency domain analysis. In this part of the paper, seismic ground response is analyzed using transfer function method for soil layers considering surcharge mass on the top layer. Equation of motion, wave equation, is solved using amended boundary conditions which effectively take the impact of surcharge mass into account. A computer program is developed by MATLAB software based on the solution method developed for wave equation. Layered soils subjected to earthquake loading were numerically studied and solved especially by the computer program developed in this research. Results obtained were compared with those given by DEEP SOIL computer program. Such comparison showed the accuracy of the program developed in this study. Also in this part, the effects of geometrical and mechanical properties of soil layers and especially the impact of surcharge mass on transfer function are investigated using the current approach and the program developed. The efficiency and accuracy of the method developed here is shown through some worked examples and through comparison of the results obtained here with those given by other approaches. Discussions on the results obtained are presented throughout in this part.

3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구 (Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model)

  • 권선용;유민택
    • 한국지반공학회논문집
    • /
    • 제32권9호
    • /
    • pp.51-62
    • /
    • 2016
  • 다양한 현장 조건에서 일어날 수 있는 건조토 지반-말뚝-구조물 시스템의 동적거동을 평가하고 고찰하기 위해 3차원 수치 모델을 이용한 매개변수 연구가 수행되었다. 강진 시 지반의 비선형 거동을 적절하게 모사하기 위해 상용 유한 차분 프로그램인 FLAC3D를 통해 시간 영역에서 이루어졌다. 지반 구성 모델은 Mohr-Coulomb 탄소성 모델을 적용하였으며 지반 전단 탄성 계수의 비선형적인 감소를 모사할 수 있는 이력 감쇠 모델을 적용하였다. 진동 시 지반-말뚝 간의 완전 접촉, 미끄러짐, 분리 현상을 모두 모사하는 경계요소 모델을 적용하였으며 경계 조건의 경우, 지반-말뚝 상호작용의 영향을 받는 근역 지반만 메쉬를 생성하고 근역 지반의 경계부에 원역 지반의 가속도-시간 이력을 입력하는 방식인 단순화 연속체 모델링 기법을 적용함으로써 해석 효율을 증가시키고자 하였다. 또한, 적절한 최대지반탄성계수와 항복 깊이의 설정으로 지반의 비선형 거동을 더욱 정확히 모사하고자 하였다. 개발된 수치 모델을 이용하여 상부질량의 크기, 말뚝의 길이, 두부 경계조건, 지반의 상대밀도에 대한 매개변수 연구를 수행함으로써 다양한 현장 조건에 대한 지반-말뚝-구조물 시스템의 동적 거동을 평가하였다. 매개변수 연구 결과, 건조토 지반 조건에서는 상부질량에 의한 관성력이 시스템의 동적 거동에 지배적인 영향을 미침을 확인하였으며 지반에 의한 운동력의 영향은 상대적으로 적다고 평가되었다. 또한 짧은 말뚝과 긴 말뚝의 동적 거동 차이 및 말뚝두부 고정단과 자유단의 거동 차이를 해석적으로 검증하였다.

다방향 불규칙파랑에 의한 케이블과 정체시스템의 반응 (Response of Cable-Buoy Systems to Directional Random Waves)

  • Jeon, Sang-Soo;John W. Leonard
    • 한국해안해양공학회지
    • /
    • 제5권1호
    • /
    • pp.25-38
    • /
    • 1993
  • 해양구조물의 케이블 반응 분석을 위한 다방향 파람 스펙트라의 수치모델이 조사되었다. 여러 형태의 전파모델을 파랑으로 인한 물입자의 흐름과 계류시스템을 예측하기 위해 사용하였다. 케이블에 작용하는 수동역학적 파력은 케이블의 경사에 평행한 방향과 접선방향에서의 항력과 관성력을 고려한 Morison 공식에 의해 평가되었다. 변위와 속도, 궤적, 위상면의 반응, 그리고 장력을 고려한 다방향 불규칙 파랑의 수치해석에 의하여 부체의 tether pc와 anchor point에서 계류시스템 케이블의 반응을 나타내었다. 서로 다른 항력 계수와 다양한 유의 파고, 그리고 선택된 파랑계수들이 이 분석에 고려되었다. 예제에서 고려된 특정 시스템을 통하여 파랑의 전파함수계수와 항력계수 뿐만 아니라 파랑의 주기와 높이가 케이블-부체시스템의 동적반응에 중요한 영향을 미침을 알 수 있었다.

  • PDF