• Title/Summary/Keyword: Inelastic Design

Search Result 435, Processing Time 0.02 seconds

Evaluation of Seismic Performance for Reinforced Concrete Piers Using Capacity Spectrum Method (역량스펙트럼 방법을 이용한 철근 콘크리트 교각의 내진성능 평가)

  • Song, Jong-Keol;Chang, Dong-Huy;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.185-194
    • /
    • 2004
  • To evaluate seismic performance of reinforced concrete piers two procedures for capacity spectrum method are presented. The capacity spectrum procedures include the reduction factor-ductility-period($R_{\mu}-{\mu}-T$)relationship in order to construct the inelastic demand spectra from the elastic demand spectra. Application of the procedures are illustrated by example analysis. Maximum displacements estimated by the procedures are compared to those by inelastic time history analysis for several artificial earthquakes. The results show that the maximum displacements estimated by the procedures are, on overall, smaller than those by the inelastic time history analysis.

  • PDF

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

DIRECT INELASTIC EARTHQUAKE DESIGN OF R/C STRUCTURE

  • Park, Hong-Gun;Eom, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.472-477
    • /
    • 2004
  • A new earthquake design method performing iterative calculations with secant stiffness was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the structural members through iterative calculations. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. The proposed method, as an integrated analysis and design method, can directly address the earthquake design strategy intended by the engineer, such as limited ductility of member and the concept of strong column - weak beam. Through iterative calculations on a structural model with member sizes preliminarily assumed, the strength and ductility demands of each member can be determined so as to satisfy the given design strategy. As the result, structural safety and economical design can be achieved.

  • PDF

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Efficacy of pushover analysis methodologies: A critical evaluation

  • Dutta, Sekhar Chandra;Chakroborty, Suvonkar;Raychaudhuri, Anusrita
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.265-276
    • /
    • 2009
  • Various Pushover analysis methodologies have evolved as an easy as well as designers-friendly alternative of nonlinear dynamic analysis for estimation of the inelastic demands of structures under seismic loading for performance based design. In fact, the established nonlinear dynamic analysis to assess the same, demands considerable analytical and computational background and rigor as well as intuitive insight into inelastic behavior for judging suitability of the results and its interpretation and hence may not be used in design office for frequent practice. In this context, the simple and viable alternative of Pushover analysis methodologies can be accepted if its efficacy is thoroughly judged over all possible varieties of the problems. Though this burning issue has invited some research efforts in this direction, still a complete picture evolving very clear guidelines for use of these alternate methodologies require much more detailed studies, providing idea about how the accuracy is influenced due to various combinations of basic parameters regulating inelastic dynamic response of the structures. The limited study presented in the paper aims to achieve this end to the extent possible. The study intends to identify the range of applicability of the technique and compares the efficacy of various alternative Pushover analysis schemes to general class of problems. Thus, the paper may prove useful in judicial use of Pushover analysis methodologies for performance based design with reasonable accuracy and relative ease.

Comparison of Stability Evaluation Methods using ASD and LRFD Codes for Girders and Towers of Steel Cable-Stayed Bridges (사장교 거더와 주탑의 안정성 검토를 위한 ASD와 LRFD 설계법 비교)

  • Choi Dong-Ho;Yoo Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1001-1008
    • /
    • 2006
  • The main objective of this paper is to compare economical effectiveness of typical methods for checking stability in principal components of steel cable-stayed bridges. Elastic and inelastic buckling analyses are carried out for frame-like numerical models of cable-stayed bridges. The axial-flexural interaction equations prescribed in AASHTO Allowable Stress Design (ASD) and AASHTO Load and Resistance Factor Design (LRFD) are used in order to check the stability of principal components. Parametric studies are performed for numerical models which have the center span length of 300m, 600m, 900m and l200m with different girder depths. Peak values of the interaction equations are calculated at the intersection point between girders and towers. These peak values are considered as a major factor to design of principal components of cable-stayed bridges. As a result, more economical design for girders and towers can be feasible using the inelastic buckling analysis. In addition, LRFD codes are more economical about 20% on the average than ASD codes for all numerical models of cable-stayed bridges.

  • PDF

Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors

  • Ramnavas, M.P.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.437-447
    • /
    • 2017
  • Explicit expressions for rapid prediction of inelastic design quantities (considering cracking of concrete) from corresponding elastic quantities, are presented for multi-storey composite frames (with steel columns and steel-concrete composite beams) subjected to service load. These expressions have been developed from weights and biases of the trained neural networks considering concrete stress, relative stiffness of beams and columns including effects of cracking in the floors below and above. Large amount of data sets required for training of neural networks have been generated using an analytical-numerical procedure developed by the authors. The neural networks have been developed for moments and deflections, for first floor, intermediate floors (second floor to ante-penultimate floor), penultimate floor and topmost floor. In the case of moments, expressions have been proposed for exterior end of exterior beam, interior end of exterior beam and both interior ends of interior beams, for each type of floor with a total of twelve expressions. Similarly, in the case of deflections, expressions have been proposed for exterior beam and interior beam of each type of floor with a total of eight expressions. The proposed expressions have been verified by comparison of the results with those obtained from the analytical-numerical procedure. This methodology helps to obtain the inelastic design quantities from the elastic quantities with simple calculations and thus would be very useful in preliminary design.

Inelastic Out-of-plane Design of Parabolic Arches

  • Moon, Jiho
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.46-49
    • /
    • 2015
  • In this paper, improved out-of-plane design of parabolic arches was proposed based on the current design code. The arches resist general loading by a combination of axial compression and bending actions, and the interaction formula between two extreme cases of axial and bending actions is generally used for the design. Firstly, the out-of-plane buckling strength of arches in a pure axial compression and a pure bending were studied. Then, out-of-plane design of parabolic aches under general transverse loading was investigated. From the results, it can be found that the proposed design equations provided good prediction of out-of-plane strength for parabolic arches which satisfy the thresholds for deep arches, while proposed design equations overestimated the buckling load of shallow arches.

ATC-55 Based Friction Damper Design Procedure for Controlling Inelastic Seismic Responses (비탄성 지진응답 제어를 위한 ATC-55에 기반한 마찰감쇠기 설계절차)

  • Kim, Hyoung-Seop;Min, Kyung-Won;Lee, Sang-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this paper is to present a design procedure of a friction damper for controlling elastic and inelastic responses of building structures under earthquake excitation. The equivalent damping and period increased by the friction damper are estimated using ATC-40 and ATC-55 procedures which provide equivalent linear system for bilinear one, and then a design formula to achieve target performance response level by the friction damper is presented. It is identified that there exists error between the responses obtained by this formula and by performing nonlinear analysis and the features of the error vary according to the hardening ratio, yield strength ratio, and structural period. Equations for compensating the error are proposed based on the least square method, and the results from numerical analysis indicate that the error is significantly reduced. The proposed formula can be used without much error for designing a friction damper for retrofitting a structure showing elastic or inelastic behavior.

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.