• Title/Summary/Keyword: Industry classification

Search Result 1,290, Processing Time 0.03 seconds

A Study on the Frame of Reference of the Korean Welfare State Model Focusing on Esping-Anderson's Wel fare State Regime (에스핑-앤더슨의 복지국가체제를 중심으로 한국형 복지국가의 준거 틀에 관한 연구)

  • Jung, Hyun-Kyung
    • Industry Promotion Research
    • /
    • v.7 no.2
    • /
    • pp.43-49
    • /
    • 2022
  • This study aims to study Esping-Anderson's theory of welfare state system, develop a model of welfare state suitable for Korea's situation, and apply it to reality. In this research method, basic research and analysis of ideology is used, focusing on Esping-Anderson's welfare state system theory, and applying it appropriately to the Korean situation. Studies on the model of the welfare state have been studied after the classification of complementary and institutional models asserted by Willensky and Lebo in 1965. In addition, Esping-Andersen asserts three things as a model of the welfare state according to ideology. First, the role of the market is central to the liberal welfare system that best fits the image of classical capitalism, and individualistic solidarity through the market. The role of the state or family, which can be a hindrance, is actually marginalized. In addition, in order to maximize individualistic solidarity through the market, de-commodification in the national domain tends to be minimized. Second, the conservative welfare system has a strong familistic element, so the source of social solidarity is the family, and the state plays a role of supporting and supplementing the characteristics of this family. In the conservative system, de-commodification appears to be high among household heads, or the welfare system takes on a corporatist and nationalistic form, it can be said that these characteristics are reflected. Third, in the social democratic welfare system, the source of social solidarity is the state. Therefore, the role of the state is large, the state has a high possibility of decommodification, and it has the characteristics of substitutes for the family and the market through universalist intervention. This study applies Esping-Anderson's three welfare state models to study a model suitable for the Korean situation. In conclusion, Esping-Anderson's three welfare state models can be classified into a market-oriented model based on a liberal welfare system, a status-oriented model based on a conservative corporatist welfare system, and a solidarity-oriented model based on a social-democratic welfare system, presented a compromise between liberalism and conservatism as a Korean model.

A Study on the Linkage and Development of the BRM Based National Tasks and the Policy Information Contents (BRM기반 국정과제와 정책정보콘텐츠 연계 및 구축방안에 관한 연구)

  • Younghee, Noh;Inho, Chang;Hyojung, Sim;Woojung, Kwak
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.4
    • /
    • pp.191-213
    • /
    • 2022
  • With a view to providing a high-quality policy information service beyond the existing national task service of the national policy information portal (POINT) of the National Library of Korea Sejong, it would be necessary to effectively provide the policy data needed for the implementation of the new national tasks. Accordingly, in this study, an attempt has been made to find a way to connect and develop the BRM-based national tasks and the policy information contents. Towards this end, first, the types of national tasks and the contents of each field and area of the government function's classification system were analyzed, with a focus placed on the 120 national tasks of the new administration. Furthermore, by comparing and analyzing the national tasks of the previous administration and the current information, the contents ought to be reflected for the development of contents related to the national tasks identified. Second, the method for linking and collecting the policy information was sought based on the analysis of the current status of policy information and the national information portal. As a result of the study, first, examining the 1st stage BRM of the national tasks, it turned out that there were 21 tasks for social welfare, 14 for unification and diplomacy, 17 for small and medium-sized businesses in industry and trade, 12 for general public administration, 8 for the economy, taxation and finance, 6 for culture, sports and tourism, science and technology, and education each, 5 for communication, public order and safety each, 4 for health, transportation and logistics, and environment each, 3 for agriculture and forestry, 2 for national defense and regional development each, and 1 for maritime and fisheries each, among others. As for the new administration, it is apparent that science technology and IT are important, and hence, it is necessary to consider such when developing the information services for the core national tasks. Second, to link the database with external organizations, it would be necessary to form a linked operation council, link and collect the information on the national tasks, and link and provide the national task-related information for the POINTs.

Metabolic Discrimination of Papaya (Carica papaya L.) Leaves Depending on Growth Temperature Using Multivariate Analysis of FT-IR Spectroscopy Data (FT-IR 스펙트럼 다변량통계분석을 이용한 파파야(Carica papaya L.)의 생육온도 변화에 따른 대사체 수준 식별)

  • Jung, Young Bin;Kim, Chun Hwan;Lim, Chan Kyu;Kim, Sung Chel;Song, Kwan Jeong;Song, Seung Yeob
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.378-383
    • /
    • 2019
  • To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate papaya at metabolic level. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and 1,100-950 cm-1, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins (1,700-1,500 cm-1), phosphodiester groups from nucleic acid and phospholipid (1,500-1,300 cm-1) and carbohydrate compounds (1,100-950 cm-1). The result of PCA analysis showed that papaya leaves could be separated into clusters depending on different growth temperature. In this case, showed discrimination confirmed according to metabolite content of growth condition from papaya. And PLS-DA analysis also showed more clear discrimination pattern than PCA result. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful papaya cultivars.

Samae Dam chicken: a variety of the Pradu Hang Dam breed revealed from microsatellite genotyping data

  • Nivit Tanglertpaibul;Trifan Budi;Chien Phuoc Tran Nguyen;Worapong Singchat;Wongsathit Wongloet;Nichakorn Kumnan;Piangjai Chalermwong;Anh Huynh Luu;Kantika Noito;Thitipong Panthum;Pish Wattanadilokchatkun;Anuphong Payopat;Natthamon Klinpetch;Aingorn Chaiyes;Kanithaporn Vangnai;Chotika Yokthongwattana;Chomdao Sinthuvanich;Syed Farhan Ahmad;Narongrit Muangmai;Kyudong Han;Mitsuo Nunome;Akihiko Koga;Prateep Duengkae;Sompon Waipanya;Yoichi Matsuda;Kornsorn Srikulnath
    • Animal Bioscience
    • /
    • v.37 no.12
    • /
    • pp.2033-2043
    • /
    • 2024
  • Objective: The remarkable adaptability to the environment, high growth rate, meat with good taste and aroma, and ornamental appearance of the Pradu Hang Dam (PDH) and Samae Dam (SD) chickens make them valuable for improvement of poultry production to enhance food security. However, despite their close phenotypic similarity, distinct classification of PDH and SD chickens remains controversial. Thus, this study aimed to clarify genetic origins and variation between PDH and SD chickens, genetic diversity and structures of PDH and SD chickens. Methods: This study analyzed 5 populations of PDH and 2 populations of SD chickens using 28 microsatellite markers and compared with those of other indigenous and local chicken breeds using Thailand's "The Siam Chicken Bioresource Project" database. Results: Considerably high genetic variability was observed within PDH (370 total alleles; 4.086±0.312 alleles/locus) and SD chickens (179 total alleles; 3.607±0.349 alleles/locus). A partial overlap of gene pools was observed between SD chickens from the Department of Livestock, Uthai Thani (SD1) and PDH chickens, suggesting a potentially close relationship between the two chicken breeds. A gene pool that partially overlapped with that of the red junglefowl was observed in the SD chicken population from the Sanhawat Farm Uthai Thani population (SD2). Distinct subclusters were observed within SD chickens, indicating the possibility that genetic differentiation occurred early in the process of establishment of SD chickens. Conclusion: These findings could offer valuable insights into genetic verification of Thai local chicken breeds and their sustainable conservation and utilization.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.

Case Analysis of the Promotion Methodologies in the Smart Exhibition Environment (스마트 전시 환경에서 프로모션 적용 사례 및 분석)

  • Moon, Hyun Sil;Kim, Nam Hee;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.171-183
    • /
    • 2012
  • In the development of technologies, the exhibition industry has received much attention from governments and companies as an important way of marketing activities. Also, the exhibitors have considered the exhibition as new channels of marketing activities. However, the growing size of exhibitions for net square feet and the number of visitors naturally creates the competitive environment for them. Therefore, to make use of the effective marketing tools in these environments, they have planned and implemented many promotion technics. Especially, through smart environment which makes them provide real-time information for visitors, they can implement various kinds of promotion. However, promotions ignoring visitors' various needs and preferences can lose the original purposes and functions of them. That is, as indiscriminate promotions make visitors feel like spam, they can't achieve their purposes. Therefore, they need an approach using STP strategy which segments visitors through right evidences (Segmentation), selects the target visitors (Targeting), and give proper services to them (Positioning). For using STP Strategy in the smart exhibition environment, we consider these characteristics of it. First, an exhibition is defined as market events of a specific duration, which are held at intervals. According to this, exhibitors who plan some promotions should different events and promotions in each exhibition. Therefore, when they adopt traditional STP strategies, a system can provide services using insufficient information and of existing visitors, and should guarantee the performance of it. Second, to segment automatically, cluster analysis which is generally used as data mining technology can be adopted. In the smart exhibition environment, information of visitors can be acquired in real-time. At the same time, services using this information should be also provided in real-time. However, many clustering algorithms have scalability problem which they hardly work on a large database and require for domain knowledge to determine input parameters. Therefore, through selecting a suitable methodology and fitting, it should provide real-time services. Finally, it is needed to make use of data in the smart exhibition environment. As there are useful data such as booth visit records and participation records for events, the STP strategy for the smart exhibition is based on not only demographical segmentation but also behavioral segmentation. Therefore, in this study, we analyze a case of the promotion methodology which exhibitors can provide a differentiated service to segmented visitors in the smart exhibition environment. First, considering characteristics of the smart exhibition environment, we draw evidences of segmentation and fit the clustering methodology for providing real-time services. There are many studies for classify visitors, but we adopt a segmentation methodology based on visitors' behavioral traits. Through the direct observation, Veron and Levasseur classify visitors into four groups to liken visitors' traits to animals (Butterfly, fish, grasshopper, and ant). Especially, because variables of their classification like the number of visits and the average time of a visit can estimate in the smart exhibition environment, it can provide theoretical and practical background for our system. Next, we construct a pilot system which automatically selects suitable visitors along the objectives of promotions and instantly provide promotion messages to them. That is, based on the segmentation of our methodology, our system automatically selects suitable visitors along the characteristics of promotions. We adopt this system to real exhibition environment, and analyze data from results of adaptation. As a result, as we classify visitors into four types through their behavioral pattern in the exhibition, we provide some insights for researchers who build the smart exhibition environment and can gain promotion strategies fitting each cluster. First, visitors of ANT type show high response rate for promotion messages except experience promotion. So they are fascinated by actual profits in exhibition area, and dislike promotions requiring a long time. Contrastively, visitors of GRASSHOPPER type show high response rate only for experience promotion. Second, visitors of FISH type appear favors to coupon and contents promotions. That is, although they don't look in detail, they prefer to obtain further information such as brochure. Especially, exhibitors that want to give much information for limited time should give attention to visitors of this type. Consequently, these promotion strategies are expected to give exhibitors some insights when they plan and organize their activities, and grow the performance of them.

The Effect of Mutual Trust on Relational Performance in Supplier-Buyer Relationships for Business Services Transactions (재상업복무교역중적매매관계중상호신임대관계적효적영향(在商业服务交易中的买卖关系中相互信任对关系绩效的影响))

  • Noh, Jeon-Pyo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.32-43
    • /
    • 2009
  • Trust has been studied extensively in psychology, economics, and sociology, and its importance has been emphasized not only in marketing, but also in business disciplines in general. Unlike past relationships between suppliers and buyers, which take considerable advantage of private networks and may involve unethical business practices, partnerships between suppliers and buyers are at the core of success for industrial marketing amid intense global competition in the 21st century. A high level of mutual cooperation occurs through an exchange relationship based on trust, which brings long-term benefits, competitive enhancements, and transaction cost reductions, among other benefits, for both buyers and suppliers. In spite of the important role of trust, existing studies in buy-supply situations overlook the role of trust and do not systematically analyze the effect of trust on relational performance. Consequently, an in-depth study that determines the relation of trust to the relational performance between buyers and suppliers of business services is absolutely needed. Business services in this study, which include those supporting the manufacturing industry, are drawing attention as the economic growth engine for the next generation. The Korean government has selected business services as a strategic area for the development of manufacturing sectors. Since the demands for opening business services markets are becoming fiercer, the competitiveness of the business service industry must be promoted now more than ever. The purpose of this study is to investigate the effect of the mutual trust between buyers and suppliers on relational performance. Specifically, this study proposed a theoretical model of trust-relational performance in the transactions of business services and empirically tested the hypotheses delineated from the framework. The study suggests strategic implications based on research findings. Empirical data were collected via multiple methods, including via telephone, mail, and in-person interviews. Sample companies were knowledge-based companies supplying and purchasing business services in Korea. The present study collected data on a dyadic basis. Each pair of sample companies includes a buying company and its corresponding supplying company. Mutual trust was traced for each pair of companies. This study proposes a model of trust-relational performance of buying-supplying for business services. The model consists of trust and its antecedents and consequences. The trust of buyers is classified into trust toward the supplying company and trust toward salespersons. Viewing trust both at the individual level and the organizational level is based on the research of Doney and Cannon (1997). Normally, buyers are the subject of trust, but this study supposes that suppliers are the subjects. Hence, it uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers, like buyers, are the subject of trust since transactions are normally bilateral. From this point of view, suppliers' trust in buyers is as important as buyers' trust in suppliers. The suppliers' trust is influenced by the extent to which it trusts the buying companies and the buyers. This classification of trust using an individual level and an organization level is based on the suggestion of Doney and Cannon (1997). Trust affects the process of supplier selection, which works in a bilateral manner. Suppliers are actively involved in the supplier selection process, working very closely with buyers. In addition, the process is affected by the extent to which each party trusts its partners. The selection process consists of certain steps: recognition, information search, supplier selection, and performance evaluation. As a result of the process, both buyers and suppliers evaluate the performance and take corrective actions on the basis of such outcomes as tangible, intangible, and/or side effects. The measurement of trust used for the present study was developed on the basis of the studies of Mayer, Davis and Schoorman (1995) and Mayer and Davis (1999). Based on their recommendations, the three dimensions of trust used for the study include ability, benevolence, and integrity. The original questions were adjusted to the context of the transactions of business services. For example, a question such as "He/she has professional capabilities" has been changed to "The salesperson showed professional capabilities while we talked about our products." The measurement used for this study differs from those used in previous studies (Rotter 1967; Sullivan and Peterson 1982; Dwyer and Oh 1987). The measurements of the antecedents and consequences of trust used for this study were developed on the basis of Doney and Cannon (1997). The original questions were adjusted to the context of transactions in business services. In particular, questions were developed for both buyers and suppliers to address the following factors: reputation (integrity, customer care, good-will), market standing (company size, market share, positioning in the industry), willingness to customize (product, process, delivery), information sharing (proprietary information, private information), willingness to maintain relationships, perceived professionalism, authority empowerment, buyer-seller similarity, and contact frequency. As a consequential variable of trust, relational performance was measured. Relational performance is classified into tangible effects, intangible effects, and side effects. Tangible effects include financial performance; intangible effects include improvements in relations, network developing, and internal employee satisfaction; side effects include those not included either in the tangible or intangible effects. Three hundred fifty pairs of companies were contacted, and one hundred five pairs of companies responded. After deleting five company pairs because of incomplete responses, one hundred five pairs of companies were used for data analysis. The response ratio of the companies used for data analysis is 30% (105/350), which is above the average response ratio in industrial marketing research. As for the characteristics of the respondent companies, the majority of the companies operate service businesses for both buyers (85.4%) and suppliers (81.8%). The majority of buyers (76%) deal with consumer goods, while the majority of suppliers (70%) deal with industrial goods. This may imply that buyers process the incoming material, parts, and components to produce the finished consumer goods. As indicated by their report of the length of acquaintance with their partners, suppliers appear to have longer business relationships than do buyers. Hypothesis 1 tested the effects of buyer-supplier characteristics on trust. The salesperson's professionalism (t=2.070, p<0.05) and authority empowerment (t=2.328, p<0.05) positively affected buyers' trust toward suppliers. On the other hand, authority empowerment (t=2.192, p<0.05) positively affected supplier trust toward buyers. For both buyers and suppliers, the degree of authority empowerment plays a crucial role in the maintenance of their trust in each other. Hypothesis 2 tested the effects of buyerseller relational characteristics on trust. Buyers tend to trust suppliers, as suppliers make every effort to contact buyers (t=2.212, p<0.05). This tendency has also been shown to be much stronger for suppliers (t=2.591, p<0.01). On the other hand suppliers trust buyers because suppliers perceive buyers as being similar to themselves (t=2.702, p<0.01). This finding confirmed the results of Crosby, Evans, and Cowles (1990), which reported that suppliers and buyers build relationships through regular meetings, either for business or personal matters. Hypothesis 3 tested the effects of trust on perceived risk. It has been found that for both suppliers and buyers the lower is the trust, the higher is the perceived risk (t=-6.621, p<0.01 for buyers; t=-2.437, p<0.05). Interestingly, this tendency has been shown to be much stronger for buyers than for suppliers. One possible explanation for this higher level of perceived risk is that buyers normally perceive higher risks than do suppliers in transactions involving business services. For this reason, it is necessary for suppliers to implement risk reduction strategies for buyers. Hypothesis 4 tested the effects of trust on information searching. It has been found that for both suppliers and buyers, contrary to expectation, trust depends on their partner's reputation (t=2.929, p<0.01 for buyers; t=2.711, p<0.05 for suppliers). This finding shows that suppliers with good reputations tend to be trusted. Prior experience did not show any significant relationship with trust for either buyers or suppliers. Hypothesis 5 tested the effects of trust on supplier/buyer selection. Unlike buyers, suppliers tend to trust buyers when they think that previous transactions with buyers were important (t=2.913 p<0.01). However, this study did not show any significant relationship between source loyalty and the trust of buyers in suppliers. Hypothesis 6 tested the effects of trust on relational performances. For buyers and suppliers, financial performance reportedly improved when they trusted their partners (t=2.301, p<0.05 for buyers; t=3.692, p<0.01 for suppliers). It is interesting that this tendency was much stronger for suppliers than it was for buyers. Similarly, competitiveness was reported to improve when buyers and suppliers trusted their partners (t=3.563, p<0.01 for buyers; t=3.042, p<0.01 for suppliers). For suppliers, efficiency and productivity were reportedly improved when they trusted buyers (t=2.673, p<0.01). Other performance indices showed insignificant relationships with trust. The findings of this study have some strategic implications. First and most importantly, trust-based transactions are beneficial for both suppliers and buyers. As verified in the study, financial performance can be improved through efforts to build and maintain mutual trust. Similarly, competitiveness can be increased through the same kinds of effort. Second, trust-based transactions can facilitate the reduction of perceived risks inherent in the purchasing situation. This finding has implications for both suppliers and buyers. It is generally believed that buyers perceive higher risks in a highly involved purchasing situation. To reduce risks, previous studies have recommended that suppliers devise risk-reducing tactics. Moving beyond these recommendations, the present study uniquely focused on the bilateral perspective of perceived risk. In other words, suppliers are also susceptible to perceived risks, especially when they supply services that require very technical and sophisticated manipulations and maintenance. Consequently, buyers and suppliers must solve problems together in close collaboration. Hence, mutual trust plays a crucial role in the problem-solving process. Third, as found in this study, the more authority a salesperson has, the more he or she can be trusted. This finding is very important with regard to tactics. Building trust is a long-term assignment; however, when mutual trust has not been developed, suppliers can overcome the problems they encounter by empowering a salesperson with the authority to make certain decisions. This finding applies to suppliers as well.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Typology of Korean Eco-sumers: Based on Clothing Disposal Behaviors (관우한국생태학적일개예설(关于韩国生态学的一个预设): 기우복장탑배적행위(基于服装搭配的行为))

  • Sung, Hee-Won;Kincade, Doris H.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.59-69
    • /
    • 2010
  • Green or an environmental consciousness has been a major issue for businesses and government offices, as well as consumers, worldwide. In response to this movement, the Korean government announced, in the early 2000s, the era of "Green Growth" as a way to encourage green-related business activities. The Korean fashion industry, in various levels of involvement, presents diverse eco-friendly products as a part of the green movement. These apparel products include organic products and recycled clothing. For these companies to be successful, they need information about who are the consumers who consider green issues (e.g., environmental sustainability) as part of their personal values when making a decision for product purchase, use, and disposal. These consumers can be considered as eco-sumers. Previous studies have examined consumers' purchase intention for or with eco-friendly products. In addition, studies have examined influential factors used to identify the eco-sumers or green consumers. However, limited attention was paid to eco-sumers' disposal or recycling behavior of clothes in comparison with their green product purchases. Clothing disposal behaviors are ways that consumer can get rid of unused clothing and in clue temporarily lending the item or permanently eliminating the item by "handing down" (e.g., giving it to a younger sibling), donating, exchanging, selling, or simply throwing it away. Accordingly, examining purchasing behaviors of eco-friendly fashion items in conjunction with clothing disposal behaviors should improve understanding of a consumer's clothing consumption behavior from the environmental perspective. The purpose of this exploratory study is to provide descriptive information about Korean eco-sumers who have ecologically-favorable lifestyles and behaviors when buying and disposing of clothes. The objectives of this study are to (a) categorize Koreans on the basis of clothing disposal behaviors; (b) investigate the differences in demographics, lifestyles, and clothing consumption values among segments; and (c) compare the purchase intention of eco-friendly fashion items and influential factors among segments. A self-administered questionnaire was developed based on previous studies. The questionnaire included 10 items of clothing disposal behavior, 22 items of LOHAS (Lifestyles of Health and Sustainability) characteristics, and 19 items of consumption values, measured by five-point Likert-type scales. In addition, the purchase intention of two eco-friendly fashion items and 11 attributes of each item were measured by seven-point Likert type scales. Two polyester fleece pullovers, made from fabric created from recycled bottles with the PET identification code, were selected from one Korean brand and one US imported brand among outdoor sportswear brands. A brief description of each product with a color picture was provided in the survey. Demographic variables (i.e., gender, age, marital status, education level, income, occupation) were also included. The data were collected through a professional web survey agency during May 2009. A total of 600 final usable questionnaires were analyzed. The age of respondents ranged from 20 to 49 years old with a mean age of 34 years. Fifty percent of the respondents were males and about 58% were married, and 62% reported having earned university degrees. Principal components factor analysis with varimax rotation was used to identify the underlying dimensions of the clothing disposal behavior scale, and three factors were generated (i.e., reselling behavior, donating behavior, non-recycling behavior). To categorize the respondents on the basis of clothing disposal behaviors, k-mean cluster analysis was used, and three segments were obtained. These consumer segments were labeled as 'Resale Group', 'Donation Group', and 'Non-Recycling Group.' The classification results indicated approximately 98 percent of the original cases were correctly classified. With respect to demographic characteristics among the three segments, significant differences were found in gender, marital status, occupation, and age. LOHAS characteristics were reduced into the following five factors: self-satisfaction, family orientation, health concern, environmental concern, and voluntary service. Significant differences were found in the LOHAS factors among the three clusters. Resale Group and Donation Group showed a similar predisposition to LOHAS issues while the Non-Recycling Group presented the lowest mean scores on the LOHAS factors compared to the other segments. The Resale and Donation Groups described themselves as enjoying or being satisfied with their lives and spending spare-time with family. In addition, these two groups cared about health and organic foods, and tried to conserve energy and resources. Principal components factor analysis generated clothing consumption values into the following three factors: personal values, social value, and practical value. The ANOVA test with the factors showed differences primarily between the Resale Group and the other two groups. The Resale Group was more concerned about personal value and social value than the other segments. In contrast, the Non-Recycling Group presented the higher level of social value than did Donation Group. In a comparison of the intention to purchase eco-friendly products, the Resale Group showed the highest mean score on intent to purchase Product A. On the other hand, the Donation Group presented the highest intention to purchase for Product B among segments. In addition, the mean scores indicated that the Korean product (Product B) was more preferable for purchase than the U.S. product (Product A). Stepwise regression analysis was used to identify the influence of product attributes on the purchase intention of eco product. With respect to Product A, design, price and contribution to environmental preservation were significant to predict purchase intention for the Resale Group, while price and compatibility with my image factors were significant for the Donation Group. For the Non-Recycling Group, design, price compatibility with the factors of my image, participation to eco campaign, and contribution to environmental preservation were significant. Price appropriateness was significant for each of the three clusters. With respect to Product B, design, price and compatibility with my image factors were important, but different attributes were associated significantly with purchase intention for each of the three groups. The influence of LOHAS characteristics and clothing consumption values on intention to purchase Products A and B were also examined. The LOHAS factor of health concern and the personal value factor were significant in the relationships with the purchase intention; however, the explanatory powers were low in the three segments. Findings showed that each group as classified by clothing disposal behaviors showed differences in the attributes of a product, personal values, and the LOHAS characteristics that influenced their purchase intention of eco-friendly products. Findings would enable organizations to understand eco-friendly behavior and to design appropriate strategic decisions to appeal eco-sumers.