• 제목/요약/키워드: Industry Technical Problem

검색결과 183건 처리시간 0.022초

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

일본의 중견기업에 관한 연구 : 현황과 특징, 정책을 중심으로 (A Study on Medium-Sized Enterprises of Japan)

  • 강철구;김현성;김현철
    • 중소기업연구
    • /
    • 제32권2호
    • /
    • pp.209-223
    • /
    • 2010
  • 본고에서는 일본 중견기업의 위상, 특징, 관련 정책을 검토함으로써 우리나라에서의 중견기업 정책의 방향을 모색하고자 한다. 일본의 경쟁우위업종인 기계, 전자부품업의 출하와 고용비중은 여타 업종보다 높아, 그 저변에 두터운 중견기업이 존재하고 있음을 알 수 있다. 일본의 중견기업 육성정책은 연구개발과 환경대책을 위한 기업간 제휴 유도라는 측면에서 간접적으로 지원하고 있다. 우리나라도 특정 정책사업에 있어서 기업간 협력 유도를 통하여 중견기업을 육성할 수 있을 것이다.

재상업복무교역중적매매관계중상호신임대관계적효적영향(在商业服务交易中的买卖关系中相互信任对关系绩效的影响) (The Effect of Mutual Trust on Relational Performance in Supplier-Buyer Relationships for Business Services Transactions)

  • Noh, Jeon-Pyo
    • 마케팅과학연구
    • /
    • 제19권4호
    • /
    • pp.32-43
    • /
    • 2009
  • 信任在心理学, 经济学, 社会学中已被广泛研究, 其重要性不仅在市场营销中被强调, 在一般商业原则中也被强调. 供应商和买家之间的关系与过去不同, 过去的关系需要相当大的私人网络优势, 并可能涉及不道德的商业行为. 而在以工业营销成功的为核心的二十一世纪激烈的全球竞争中, 供应商和买家之间的关系是伙伴关系. 在相互合作的高级别信任的基础上, 通过交换的关系, 这会给买家和供应商带来长期的利益, 竞争力增强和交易成本的降低以及其他福利. 尽管现有的研究有信任的重要性, 但是在购买与供应关系中却忽视了信任的作用, 也没有系统地分析信任对关系的影响. 因此, 深入研究, 确定买家和商业服务供应商之间信任和关系绩效之间的联系是绝对需要的. 本研究中的商业服务, 包括那些支持制造业, 正作为下一代经济增长的引擎而吸引着人们的注意. 韩国政府已选择其作为制造业发展的战略领域. 由于商业服务开放市场的需求日趋激烈, 商业服务业的竞争力应该比以往得到更多的提倡. 本研究的目的是探索相互信任对买家和供应商之间的关系绩效的影响. 具体来说, 本研究在商业服务交易中提出了一个关于信任-关系绩效的理论模型, 并实证检验根据模型而提出的假设. 这项研究表明, 研究结果有战略意义. 本研究通过多种方法收集经验数据. 这些方法包括通过电话, 邮件和面试. 作为样本的公司是在韩国供应和购买商业服务的以知识为本的公司. 本研究收集的是二进的基础数据. 每个样本公司对包括购买公司及其相应的供应公司. 并跟踪调查每个公司对的相互信任. 本研究为商业服务的买卖双方提出了信任-关系绩效的模型. 该模型由信任和它的前因和后果. 买家的信任分为对供应公司的信任和对销售人员的信任. 根据Doney 和Cannon (1997)的研究我们在个人水平和组织水平上观察信任. 通常情况下, 买方是信任的受体, 但这项研究我们建议以供应商为观察受体. 因此, 它独特的关注了双边角度的知觉风险. 换言之, 供应商和买家一样, 是信任的主体, 因为交易通常是双边的. 从这个角度来看, 供应商对买家信任和买方对供货商的信赖一样重要. 供应商的信任从某种程度上受它信任的买方公司和买家的影响. 这种使用个人水平和组织水平的信任分类是根据Doney 和Cannon (1997)的研究. 信任影响供应商的选择, 这是一项双向放的工作. 供应商们积极参与供应商选择过程中, 和买家密切的一起工作. 此外, 该过程从某种程度上受每一方信任的合作伙伴的影响. 挑选过程包括一些步骤: 识别, 信息检索, 供应商选择和绩效评价. 作为这一进程的结果, 买家和供应商都进行绩效评估, 并就这些结果为基础, 采取有形或无形的纠正行动. 本研究中使用的关于信任的测量问项是根据Mayer, Davis 和 Schoorman (1995) 以及Mayer和Davis (1999)的研究发展起来的. 根据他们的建议, 有关信任的三个方面的研究包括有能力, 善和完整. 根据商业服务这个背景我们调整了原来的问题. 例如, 如 "他/她的专业能力" 已被改为 "当我们讨论我们的产品时销售人员表现出专业能力. "这项研究使用的测量问项不同于在以往的研究中使用的问项(Rotter 1967; Sullivan和Peterson 1982; Dwyer和Oh 1987. 本研究中有关信任的前因后果的测量问项是根据Doney和Cannon (1997)的研究为基础制定的. 根据商业服务这个背景我们调整了原来的问题. 特别是, 问题被设计为对买家和供应商以解决下列因素: 信誉 (诚信, 客户服务, 良好意愿), 市场地位 (公司规模, 市场份额, 在行业中的地位), 愿意定制(产品, 过程, 交付), 信息共享(专有信息, 个人信息), 愿意保持良好关系, 认为专业, 权威授权, 买方与卖方的相似性, 以及接触频率. 作为信任相应的变量, 我们对关系绩效进行了测试. 关系绩效分为有形的影响, 无形影响, 和副作用. 有形的影响包括财务业绩;无形的影响, 包括关系的改善, 网络开发, 以及内部员工的满意度;副作用包括既不是有形影响也不是无形影响的影响. 我们联系了350对公司, 105对公司答复了我们. 由于不完整我们删除了5对公司, 105对公司被用于数据分析. 用于数据分析的回应率为30%(三百五十零分之一百零五), 高于工业营销的平均回复比率. 至于回复的公司的特点, 大多数的公司运作的商业服务既为买方(85.4%)也为供应商(81.8%). 大部分买家是做消费品贸易(76%), 而供应商的大部分(70%)是做工业品贸易. 这可能意味着买家的过程是购入材料, 部件和组件从而生产消费品成品. 正如他们对他们与合作伙伴关系的长度的报告表示, 供应商比买家有更长的商业关系. 假设1测试买方-供应方特点对信任的影响. 销售人员的专业度(t=2.070, p<0.05)和权威授权(t=2.328, p<0.05)积极影响买方对供应方的信任. 另一方面, 权威授权(t=2.192, p<0.05)积极影响供应方对买方的信任. 对买方和供应方来说, 权威授权的程度对保持对彼此的信任有关键作用. 假设2测试买卖双方关系特点对信任的影响. 买家倾向于信任供应方, 因为供应方总是尽全力联系买方(t=2.212, p<0.05)这种倾向性在供应方方面也表现得很强(t=2.591, p<0.01). 另一方面, 供应商对买方的信任是由于供应商感知买家与自己的相似性(t=2.702, p<0.01). 这一发现证实了Crosby, Evans, 和Cowles(1990)的研究结果. 他们的结果表明供应方和买方通过商务或私务的定期会议来建立彼此的联系. 假设3测试信任对感知风险的影响. 结果表明无论对买方还是供应方, 信任越低, 感知风险就越大(买方: t =-6.621, p<0.01; 供应方: t=-2.437, p<0.05). 有趣的是, 这一趋势已被证明对买方更强. 这种较高水平的感知风险的一个可能的解释是在商业服务交易中买方通常比供应方感知到更大的风险. 为此, 有必要对供应商对买方实施减少风险的战略. 假设4测试信任对信息搜集. 根据结果, 对供应方和买方, 与预期相反, 信任取决于他们合作伙伴的名誉(买方t=2.929, p<0.01; 供应方t=2.711, p<0.05). 这一发现表明, 具有良好信誉的供应商往往是可信的. 以往的经验并没有显示出任何与买家或供应商信任的重要关系. 假设5测试信任对供应方/买方选择的影响. 与买方不同, 当供应方认为以往与买方的交易重要时, 供应方倾向信任买方(t=2.913 p<0.01). 但是, 本研究并没有现实资源忠诚和买方对供应方的信任之间有显著关系. 假设6测试的是信任对关系绩效的影响. 对买方和供应方, 当财务表现被报告提高时, 他们比较信任他们的合作伙伴(买方: t=2.301, p<0.05;供应方: t=3.692, p<0.01). 有趣的是, 这种趋势在供应方比较明显. 类似的, 当竞争力被报告提高时, 买卖双方比较信任他们的合作伙伴(买方t=3.563, p<0.01 ; 供应方t=3.042, p<0.01). 对供应方来说, 当对买方信任时效率和生产力会提高(t=2.673, p<0.01). 其他绩效指标与信任没有显著关系. 这项研究结果有一定的战略意义. 首先和最重要的是, 以信任为基础的交易对供应商和买家而言都是有益的. 根据研究证实, 通过努力建立和保持相互信任可以使财务表现提高. 同样, 可以通过同样的努力提高竞争力. 第二, 以信任为基础的交易能够减少购买情况中的感知风险. 这对供应商和买家都有启示. 人们普遍认为, 在一个高度参与的采购情况中买家感知到更高的风险. 为了减少风险, 以往的研究已建议供应商制定降低风险的策略. 而本研究的特点是从双边角度关注知觉风险. 换言之, 供应商也容易存在风险, 特别是当他们提供的服务, 需要非常先进的技术, 操作和维护. 因此, 购买者和供应商必须一起密切合作解决问题. 因此, 相互信任在问题解决过程中起着关键作用. 第三, 在这项研究中发现, 销售人员有更多的授权, 他或她越被信任. 这一发现从战术角度看是非常重要的. 建立信任是一个长期的任务, 然而, 当互信尚未开发, 供应商能够通过授权销售人员做出某些决定来克服遇到的问题, 这一结论也适用于供应商.

  • PDF