• Title/Summary/Keyword: Industrial real-time Ethernet

Search Result 40, Processing Time 0.026 seconds

Performance Evaluation of Switched Ethernet for Real-time Industrial Communication (실시간 산업용 통신을 위한 Switched Ethernet의 성능 평가)

  • Lee, Kyung-Chang;Kim, Tae-Jun;Lee, Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.90-98
    • /
    • 2003
  • The real-time industrial network, often referred to as fieldbus, is an important element for building automated manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices, numerous fieldbus protocols have been announced. But the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. Therefore, as an alternative to fieldbus, the computer network technology, especially Ethernet (IEEE 802.3), is being adapted to the industrial environment. However, the crucial technical obstacle for Ethernet is its non-deterministic behavior that makes it inadequate for industrial applications where real-time data have to be delivered within a certain time limit. Recently, the development of switched Ethernet shows a very promising prospect for industrial application due to the elimination of uncertainties in the network operation resulting in much improved performance. This paper focuses on the application of the switched Ethernet for industrial communications. More specifically, this paper presents an analytical and experimental performance evaluation of the switched Ethernet and a case study about networked control system.

Performance Evaluation of Switched Ethernet for Real-time Industrial Communication (실시간 산업용 통신을 위한 Switched Ethernet의 성능 평가)

  • Kim, D. H.;Lee, K. C.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.491-494
    • /
    • 2002
  • The real-time industrial network often referred to as fieldbus, is an important element for building automated manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices such as sensors, actuators, and controllers. numerous standard organizations and vendors have developed various fieldbus protocols such as Profibus, WorldFIP and Foundation Fieldbus. However, the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. In order to solve these problems, the computer network technology, especially Ethernet (IEEE 802.3), is being adopted lo the industrial environment. The crucial technical obstacle for Ethernet is that its non-deterministic behavior makes it inadequate for industrial applications where real-time data such as control command and alarm signal hale to be delivered within a certain time limit. Recently, the development of switched Ethernet shows a very promising prospect for industrial application due to the elimination of uncertainties in the network operation resulting in much improved performance. This paper focuses on the application of the switched Ethernet for industrial comm unications.

  • PDF

Real-time transmission properties of industrial switched Ethernet with cascade structure (다계층 구조를 가진 산업용 스위치드 이더넷에서의 실시간 전송 특성)

  • Lee, Kyung-Chang;Lee, Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.718-725
    • /
    • 2004
  • The real-time industrial network, often referred to as fieldbus, is an important element for intelligent manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices, numerous fieldbus protocols have been announced. But, the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. Therefore, as an alternative to fieldbus, the computer network technology, especially Ethernet (IEEE 802.3), is being adapted to the industrial environment. However, the crucial technical obstacle for Ethernet is its non-deterministic behavior that makes it inadequate for industrial applications where real-time data have to be delivered within a certain time limit. Recently, the development of switched Ethernet shows a very promising prospect for industrial application due to the elimination of uncertainties in the network operation resulting in much improved performance. This paper focuses on the application of the switched Ethernet with cascade structure for industrial communications. More specifically, this paper presents an analytical performance evaluation of switched Ethernet with cascade structure, and a case study about networked control system.

Ethernet with Virtual Polling Algorithm for real-Time Industrial Communication Network (실시간 산업용 네트워크를 위한 가상 폴링 기반 이더넷 구현)

  • Kim, T. J.;Lee, K. C;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.602-605
    • /
    • 2001
  • This paper focus on a method to use Ethernet Network for Industrial Communication Network. Ethernet use the CSMA/CD MAC(Medium Access Control) Protocol at the Data-Link Layer, Which isn't suit for Industrial Communication Network requiring Real-Time Communication, periodic data processing, critical data processing characteristics. In this paper we proposed the Virtual Polling Algorithm at the Application Layer will be solution of using the Ethernet Network for the Industrial Communication Network, Proposed Algorithm terminate the Collision in the network thus Delay Time is reduced and Real-Time Communication will be implemented.

  • PDF

Redundancy Method for Industrial Real-time Ethernet for NPPs (원전용 실시간 제어망을 위한 실시간 이더넷 기술의 마스터 이중화 기법)

  • Yun, Jin-Sik;Kim, Yun-Seop;Kim, Dong-Sung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • This paper proposes a reliability enhancement of industrial real-time Ethernet using master redundancy method for NPPs(Nuclear Power Plants). In this paper, Ethernet Powerlink is investigated for distributed control systems for NPPs considering real-time and reliability performance. The proposed method can reduce a master switch-over time using PReq signal when Ethernet Powerlink master(Managing Node) failure was occurred. Using the OPNET simulation results, the performance enhancement of master switch-over time of Ethernet Powerlink is verified for NPPs.

A Feasible Condition for EDF-based Scheduling of Periodic Messages on a Synchronized Switched Ethernet (동기식 스위칭 이더넷에서 주기적 메시지에 대한 마감시간우선 기반 메시지 스케쥴링을 위한 조건)

  • Kim, Myung-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.403-410
    • /
    • 2010
  • The switched Ethernet has many features for real-time communications such as providing traffic isolation, large bandwidth, and full-duplex links, and so on. The switched Ethernet, however, cannot guarantee the timely delivery of a real-time message because message delay increases when collisions occurs at the output ports and message loss can even occur due to the overflow at the output buffer. Recently, many research efforts have been done to use the switched Ethernet as an industrial control network. In the industrial control network, sensors periodically sense the physical environment and transmit the sensed data to an actuator, and the periodic messages from sensors to actuators have typically real-time requirements such that those messages must be transmitted within their deadlines. This paper first suggests a feasible condition for EDF (Earliest Deadline First)-based scheduling of periodic messages on a synchronized switched Ethernet and a message scheduling algorithm which satisfies the proposed feasible condition. Pedreiras, et al. [10] suggested a feasible condition for message scheduling on the Ethernet (shared media Ethernet), but there has been no research result on the scheduling condition on the switched Ethernet until now. We compared the real-time message scheduling capacity between the Ethernet and the switched Ethernet by simulation. The simulation result shows that the message scheduling capacity of the Ethernet has almost remained constant as the number of nodes on the network increases, but, in the case of the switched Ethernet, the message scheduling capacity has increased linearly according to the number of nodes on the network.

Performance Analysis of Switched Ethernets with Different Topologies for Industrial Communications (공장자동화를 위한 토폴로지에 따른 스위칭 이더넷의 성능분석)

  • Kim, Myung-Kyun;Park, Zin-Won
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.99-108
    • /
    • 2004
  • In this paper, the performance of switched ethernet networks with different topologies as an industrial control networks is analyzed. The switched ethernet eliminated data collisions on the network and can be used to transmit real-time data. While the amount of data on the network is small compared to the computer networks, the industrial control networks require the real-time data delivery. In this paper, we analyze and compare the network performance of switched ethernet networks with linear and tree topologies whether they satisfy the real-time data delivery requirement needed to be used as the industrial control networks.

Protocol Implementation for Ethernet-Based Real-Time Communication Network (이더넷 기반 실시간 통신 네트워크 프로토콜 구현)

  • Kwon, Young-Woo;Nguyen, Dung Huy;Choi, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.247-251
    • /
    • 2021
  • We propose a protocol for Ethernet-based industrial real-time communication networks. In the protocol, the master periodically transmits control frames to all slaves, and the ring-type network topology is selected to achieve high-speed transmission speed. The proposed protocol is implemented in the form of both firmware and Linux kernel modules. To improve the transmission speed, the MAC address table is disabled in the firmware implementation, and the NAPI function of the Ethernet driver is removed in the Linux kernel module implementation. A network experiment environment is built with four ARM processor-based embedded systems and network operation experiments are performed for various frame sizes. From the experimental results, it is verified that the proposed protocol normally operates, and the firmware implementation shows better transmission speed than the Linux kernel module implementation.

Implementation of EtherCAT Slave Module for IEC 61800-based Power Driver System (IEC 61800 기반 파워 드라이버 시스템을 위한 EtherCAT 슬레이브 모듈 구현)

  • Kim, Man-Ho;Park, Jee-Hun;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.176-182
    • /
    • 2011
  • Industrial network, often referred to as fieldbus, becomes an indispensable component for intelligent manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices such as sensors, actuators, and controllers, numerous fieldbus protocols have been developed. But, the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. As an alternative to fieldbus, the Ethernet (IEEE 802.3) technology is being adapted to the industrial environment. However, the crucial technical obstacle of Ethernet is its non-deterministic behavior that cannot satisfy the real-time requirements. Recently, the EtherCAT protocol becomes a very promising alternative for real-time industrial application due to the elimination of uncertainties in Ethernet. This paper focuses on the implementation of the IEC 61800 based real-time EtherCAT network for multi-axis smart driver. To demonstrate the feasibility of the implemented EtherCAT slave module, its synchronization performance is evaluated on the experimental EtherCAT testbed with a single axis smart driver.

ASIC for Ethernet based real_time communication in DCS

  • Nakajima, Takeshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1836-1839
    • /
    • 2005
  • We have developed Ethernet based real-time communication systems called "Vnet/IP" for DCS which is the control system for process automation. This paper describes the features and the technologies of the ASIC which is utilized in the communication interface hardware for Vnet/IP. Vnet/IP has been developed for mission-critical communications. Hence it has real-time feature, high reliability and precise time synchronization capability. At the same time, it is able to deal with standard protocols without influence on mission-critical communications. The communication interface hardware has a host interface and dual redundant network interfaces. The host interface can be chosen PCI-bus or R-bus which is the proprietary internal bus developed for the high reliable redundant controller. Each network interface is a RJ45 connection with 1Gbps maximum in compliance with IEEE802.3.

  • PDF