• 제목/요약/키워드: Industrial plant monitoring

검색결과 149건 처리시간 0.031초

FPGA integrated IEEE 802.15.4 ZigBee wireless sensor nodes performance for industrial plant monitoring and automation

  • Ompal, Ompal;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2444-2452
    • /
    • 2022
  • The field-programmable gate array (FPGA) is gaining popularity in industrial automation such as nuclear power plant instrumentation and control (I&C) systems due to the benefits of having non-existence of operating system, minimum software errors, and minimum common reason failures. Separate functions can be processed individually and in parallel on the same integrated circuit using FPGAs in comparison to the conventional microprocessor-based systems used in any plant operations. The use of FPGAs offers the potential to minimize complexity and the accompanying difficulty of securing regulatory approval, as well as provide superior protection against obsolescence. Wireless sensor networks (WSNs) are a new technology for acquiring and processing plant data wirelessly in which sensor nodes are configured for real-time signal processing, data acquisition, and monitoring. ZigBee (IEEE 802.15.4) is an open worldwide standard for minimum power, low-cost machine-to-machine (M2M), and internet of things (IoT) enabled wireless network communication. It is always a challenge to follow the specific topology when different Zigbee nodes are placed in a large network such as a plant. The research article focuses on the hardware chip design of different topological structures supported by ZigBee that can be used for monitoring and controlling the different operations of the plant and evaluates the performance in Vitex-5 FPGA hardware. The research work presents a strategy for configuring FPGA with ZigBee sensor nodes when communicating in a large area such as an industrial plant for real-time monitoring.

플랜트 기자재 업체의 효율적인 작업장 운영을 위한 실시간 모니터링 시스템 개발 및 적용 (Development and Application of Real-Time Monitoring System for Efficient Operation of Workplace in Plant Equipment Maker)

  • 정아름;조지운;백태현
    • 산업공학
    • /
    • 제25권1호
    • /
    • pp.114-126
    • /
    • 2012
  • This study describes a real-time location monitoring system developed for efficient operation of workplace in plant equipment maker. This monitoring system can be applied for indoor and outdoor working environment respectively. By using the real-time tracking system based on RTLS, it is possible to track worker's movement and location of working object under indoor working environment. For outdoor working environment, the real-time monitoring system based on IDGPS is applied for work safety and balanced workload. A case study is provided to evaluate the performance of the real-time monitoring system.

교통신호제어기 실시간 감시를 위한 시뮬레이션 모델 구축 (Simulation Model Construction for Real-Time Monitoring of Traffic Signal Controller)

  • 김은영;장대순;장중순;박상철
    • 대한설비관리학회지
    • /
    • 제23권4호
    • /
    • pp.21-27
    • /
    • 2018
  • This paper proposed the real-time monitoring methodology of a traffic signal controller. The proposed methodology is based on the simulation technology, and it is necessary to construct a simulation model imitating the behavior of a traffic signal controller. By executing the simulation model, we can obtain the 'nominal system trajectory' of the traffic signal controller. On the other hand, an IoT(Internet of Things)-based monitoring device is implemented in a traffic signal controller. Through the monitoring device, it is possible to obtain the 'actual system trajectory'. By comparing the nominal system trajectory and the actual system trajectory, we can estimate the degree of deterioration of a traffic signal controller.

방폭 산업 현장에 강인한 센서 모니터링 장치 설계 및 실시간 구현에 대한 연구 (A Study on the Design and Real-Time Implementation of Robust Sensor Monitoring Device in Explosion Proof Industrial Site)

  • 김정현
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.867-874
    • /
    • 2023
  • In this paper, a wireless communication-based sensor data monitoring device with an explosion-proof (Exd IIC) case was implemented to enable installation at explosion-risk industrial sites such as plants. In existing industrial plant sites, most of the temperature sensors and vibration and impact sensors are wired up to several kilometers, which takes a lot of time and money to bury long pipes and cables. In addition, there are not many cases where some wireless devices have been applied to actual plant industry sites due to communication quality problems. Therefore, in order to solve this problem, zigbee mesh wireless communication was applied to provide high reliability wireless communication quality to industrial plant sites, and the time and cost incurred in new or additional installation of sensors could be greatly reduced. In particular, in the event of loss or error of some wireless communication devices, the communication network is automatically bypassed or recovered to enable real-time data monitoring.

차세대 USN기반의 스마트 플랜트안전 프레임워크 개발 (SPSF : Smart Plant Safety Framework based on Reliable-Secure USN)

  • 정지은;송병훈;이형수
    • 정보통신설비학회논문지
    • /
    • 제9권3호
    • /
    • pp.102-106
    • /
    • 2010
  • Recently process industries from oil and gas procedures and mining companies to manufactures of chemicals, foods, and beverages has been exploring the USN (Ubiquitous Sensor Networks) technology to improve safety of production processes. However, to apply the USN technology in the large-scale plant industry, reliability and security issues are not fully addressed yet, and the absence of the industrial sensor networking standard causes a compatibility problem with legacy equipment and systems. Although this situation, process industry such as energy plants are looking for the secure wireless plant solution to provide detailed, accurate safety monitoring from previously hard-reach, unaccordable area. In this paper, SPSF (Smart Plant Safety Framework based on Reliable-Secure USN) is suggested to fulfill the requirements of high-risk industrial environments for highly secure, reliable data collection and plant monitoring that is resistant to interference. The SPSF consists of three main layers: 1) Smart Safety Sensing Layer, 2) Smart Safety Network Layers, 3) Plant Network System Layer.

  • PDF

A Quantitative Vigilance Measuring Model by Fuzzy Sets Theory in Unlimited Monitoring Task

  • Liu, Cheng-Li;Uang, Shiaw-Tsyr;Su, Kuo-Wei
    • Industrial Engineering and Management Systems
    • /
    • 제4권2호
    • /
    • pp.176-183
    • /
    • 2005
  • The theory of signal detection has been applied to a wide range of practical situation for a long time, including sonar detection, air traffic control and so on. In general, in this theory, sensitivity parametric index d' and bias parametric index $\beta$ are used to evaluated the performance of vigilance. These indices use observer's response "hit" and "false alarm" to explain and evaluate vigilance, but not considering reaction time. However, the reaction time of detecting should be considered in measuring vigilance in some supervisory tasks such as unlimited monitoring tasks (e.g., supervisors in nuclear plant). There are some researchers have used the segments of reaction time to generate a pair of probabilities of hit and false alarm probabilities and plot the receiver operating characteristic curve. The purpose of this study was to develop a quantitative vigilance-measuring model by fuzzy sets, which combined the concepts of hit, false alarm and reaction time. The model extends two-values logic to multi-values logic by membership functions of fuzzy sets. A simulated experiment of monitoring task in nuclear plant was carried out. Results indicated that the new vigilance-measuring model is more efficient than traditional indices; the characteristics of vigilance would be realized more clearly in unlimited monitoring task.

MODELING AND MULTIRESOLUTION ANALYSIS IN A FULL-SCALE INDUSTRIAL PLANT

  • Yoo, Chang-Kyoo;Son, Hong-Rok;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • 제10권2호
    • /
    • pp.88-103
    • /
    • 2005
  • In this paper, data-driven modeling and multiresolution analysis (MRA) are applied for a full-scale wastewater treatment plant (WWTP). The proposed method is based on modeling by partial least squares (PLS) and multiscale monitoring by a generic dissimilarity measure (GDM), which is suitable for nonstationary and non-normal process monitoring such as a biological process. Case study in an industrial plant showed that the PLS model could give good modeling performance and analyze the dynamics of a complex plant and MRA was useful to detect and isolate various faults due to its multiscale nature. The proposed method enables us to show the underlying phenomena as well as to filter out unwanted and disturbing phenomena.

여수지역 비정규직 플랜트 건설 근로자의 안전보건 실태와 개선방안 (Health Status and Improvement Measures for Irregular Plant Construction Workers at Yeosu National Industrial Complex)

  • 최상준;김신범
    • 한국산업보건학회지
    • /
    • 제19권3호
    • /
    • pp.182-194
    • /
    • 2009
  • This study was conducted to evaluate health status and to propose health protection measures of irregular plant construction workers in Yoesu National Industrial Complex (YNIC). The status of safety and health management was examined in five areas including safety and health education, work environment monitoring, health examination, health management record, and personal protective equipment (PPE) for plant construction workers. The safety training rate for plant construction workers was reached high at 91%, The training was mostly consisted of safety accident related things, but training on hazardous materials was found to be insufficient. Workplace monitoring results showed that the compliance rate for work environment for irregular construction workers was 54% and workplace monitoring during turnaround (TA) period with high risk of exposure to hazardous agents has not been implemented. While 61.4% of irregular workers received the general health examination but only 36.8% received the special health examination. The special health examination was found to be conducted only upon welders from 2-3 years ago. The issue of health management record upon irregular construction workers was not being implemented. In case of PPE, basic safety protective equipments such as safety shoes, safety belt, safety helmet were being supplied well while the supply rate of respirator for organic vapor was relatively low at 40%. Based on this study, two suggestions to maximize the utilization of the current safety and health program were made while boosting its effectiveness in protecting workers' health. First, the role of owners (petrochemical plant) related to safety and health should be strengthened. Second, in consideration of the characteristics of construction workers who usually engage in short term employment and frequent movement, community based health management organization is suggested that can overcome such structural problem and carry out the implementation of health examination and sustained health management.

환경 중 유전독성물질 검색을 위한 자주달개비 생물검정 기법의 적용연구 (Biomonitoring the Genotoxicity of Environmental Pollutants Using the Tradescantia Bioassay)

  • 신해식
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2004년도 춘계학술대회
    • /
    • pp.47-60
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public from agents that can cause mutation and/or cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

자주달개비 생물검정 기법을 이용한 환경오염 평가 (Assessment of Environmental Pollution with Tradescantia Bioassays)

  • 김진규;신해식
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2004년도 학술대회
    • /
    • pp.1-15
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public firom agents that can cause mutation anuor cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF