• Title/Summary/Keyword: Industrial demand

Search Result 2,543, Processing Time 0.025 seconds

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.

Seasonal Variations of Water Quality in the Lower Part of the Nagdong River (낙동강 하류수질의 계절적 변화)

  • KIM Yong-Gwan;SHIM Hye-Kung;CHO Hak-Rae;YOU Sun-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.511-522
    • /
    • 1984
  • The Nagdong is one of the biggest rivers in Korea, which is very important water source not only for tap water of Pusan city but also for the industrial water. Therefore, authors tried to check the water quality year by year. In this experiment one hundred and twenty water samples collected from August 1983 to July 1984 were analyzed bacteriologically and physiologically. Fifteen sampling stations were established between near Samrangjin and estuary of the river. To evaluate the water quality, temperature, pH, chloride ion, salinity, chemical oxygen demand (COD), electrical conductivity, nutrients, total coliform, fecal coliform, fecal streptococcus, viable cell count and bacterial flora were observed. The variation of water temperature was ranged $-1.5{\sim}29.0^{\circ}C$ (Mean value $13.9{\sim}16.5^{\circ}C$), it in spring was higher as $10{\sim}15^{\circ}C$ about $10^{\circ}C$ than in winter and it in autumm was very stabilized as about $20^{\circ}C$ at each station. The pH variation of the samples was ranged $6.68{\sim}9.15$. The range of concentration of chloride ion and salinity varied $7.4{\sim}l,020.5$ mg/l and $1.05{\sim}33.0\%0$, respectively. Especially, salinity of the 3rd water war was the higher than others as $25.76{\sim}31.58\%0$. COD was ranged $1.45{\sim}14.94$ mg/l and the lower part of the Nagdong River was heavily contaminated by domesitc sewage and waste water from the adjacent factor area. The range of electrical conductivity was $1.360{\times}10^2{\sim}5.650{\times}10^4{\mu}{\mho}/cm$ and that was by far higher the estuary than the upper. Concentration of nutrients were $0.008{\sim}0.040$ mg/l (Mean value $0.019{\sim}0.068$ mg/l) for $NO_2-N,\;0.038{\sim}5.253$ mg/l ($0.351{\sim}2.347$ mg/l) for $NO_3-N,\;0.100{\sim}2.685$ mg/l($0.117{\sim}1.380$ mg/l) for $NH_4-N,\;0.003{\sim}0.084$ mg/l($0.014{\sim}0.065$ mg/l) for $PO_4-P$ and $0.154{\sim}6.123$ mg/l ($1.165{\sim}3.972$ mg/l) for $SiO_2-Si$, respectively. Usually nutrients contents of the water in the upper part(included station 1 to 5) were higher than those of the estuarine area. The bacterial density of the samples ranged 7.3 to 460,000/100 ml for total coliforms, 3.6 to 460,000/100 ml for fecal coliform, $0{\sim}46,000/100ml$ for fecal streptococcus and $<30{\sim}1.2{\times}10^5/ml$ for viable cell count. Composition of coliform was $28\%$ Escherichia coli group, $18\%$ Citrobacter freundii group, $31\%$ Enterobacter aerogenes group and $22\%$ others. Predominant species among the 659 strains isolated from the samples were Pseudomonas spp. ($42\%$), Flavobacterium spp. ($20\%$) and Moraxella spp. ($12\%$).

  • PDF

Changes in Agricultural Extension Services in Korea (한국농촌지도사업(韓國農村指導事業)의 변동(變動))

  • Fujita, Yasuki;Lee, Yong-Hwan;Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.155-166
    • /
    • 2000
  • When the marcher visited Korea in fall 1994, he was shocked to see high rise apartment buildings around the capitol region including Seoul and Suwon, resulting from rising demand of housing because of urban migration followed by second and third industrial development. After 6 years in March 2000, the researcher witnessed more apartment buildings and vinyl house complexes, one of the evidences of continued economic progress in Korea. Korea had to receive the rescue finance from International Monetary Fund (IMF) because of financial crisis in 1997. However, the sign of recovery was seen in a year, and the growth rate of Gross Domestic Products (GDP) in 1999 recorded as high as 10.7 percent. During this period, the Korean government has been working on restructuring of banks, enterprises, labour and public sectors. The major directions of government were; localization, reducing administrative manpower, limiting agricultural budgets, privatization of public enterprises, integration of agricultural organization, and easing of various regulations. Thus, the power of central government shifted to local government resulting in a power increase for city mayors and county chiefs. Agricultural extension services was one of targets of government restructuring, transferred to local governments from central government. At the same time, the number of extension offices was reduced by 64 percent, extension personnel reduced by 24 percent, and extension budgets reduced. During the process of restructuring, the basic direction of extension services was set by central Rural Development Administration Personnel management, technology development and supports were transferred to provincial Rural Development Administrations, and operational responsibilities transferred to city/county governments. Agricultural extension services at the local levels changed the name to Agricultural Technology Extension Center, established under jurisdiction of city mayor or county chief. The function of technology development works were added, at the same time reducing the number of educators for agriculture and rural life. As a result of observations of rural areas and agricultural extension services at various levels, functional responsibilities of extension were not well recognized throughout the central, provincial, and local levels. Central agricultural extension services should be more concerned about effective rural development by monitoring provincial and local level extension activities more throughly. At county level extension services, it may be desirable to add a research function to reflect local agricultural technological needs. Sometimes, adding administrative tasks for extension educators may be helpful far farmers. However, tasks such as inspection and investigation should be avoided, since it may hinder the effectiveness of extension educational activities. It appeared that major contents of the agricultural extension service in Korea were focused on saving agricultural materials, developing new agricultural technology, enhancing agricultural export, increasing production and establishing market oriented farming. However these kinds of efforts may lead to non-sustainable agriculture. It would be better to put more emphasis on sustainable agriculture in the future. Agricultural extension methods in Korea may be better classified into two approaches or functions; consultation function for advanced farmers and technology transfer or educational function for small farmers. Advanced farmers were more interested in technology and management information, while small farmers were more concerned about information for farm management directions and timely diffusion of agricultural technology information. Agricultural extension service should put more emphasis on small farmer groups and active participation of farmers in these groups. Providing information and moderate advice in selecting alternatives should be the major activities for consultation for advanced farmers, while problem solving processes may be the major educational function for small farmers. Systems such as internet and e-mail should be utilized for functions of information exchange. These activities may not be an easy task for decreased numbers of extension educators along with increased administrative tasks. It may be difficult to practice a one-to-one approach However group guidance may improve the task to a certain degree.

  • PDF