• 제목/요약/키워드: Industrial Software

Search Result 2,163, Processing Time 0.026 seconds

Comparison of the accuracy of intraoral scanner by three-dimensional analysis in single and 3-unit bridge abutment model: In vitro study (단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교)

  • Huang, Mei-Yang;Son, Keunbada;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.102-109
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the accuracy of three types of intraoral scanners and the accuracy of the single abutment and bridge abutment model. Materials and methods: In this study, a single abutment, and a bridge abutment with missing first molar was fabricated and set as the reference model. The reference model was scanned with an industrial three-dimensional scanner and set as reference scan data. The reference model was scanned five times using the three intraoral scanners (CS3600, CS3500, and EZIS PO). This was set as the evaluation scan data. In the three-dimensional analysis (Geomagic control X), the divided abutment region was selected and analyzed to verify the scan accuracy of the abutment. Statistical analysis was performed using SPSS software (${\alpha}=.05$). The accuracy of intraoral scanners was compared using the Kruskal-Wallis test and post-test was performed using the Pairwise test. The accuracy difference between the single abutment model and the bridge abutment model was analyzed by the Mann-Whitney U test. Results: The accuracy according to the intraoral scanner was significantly different (P < .05). The trueness of the single abutment model and the bridge abutment model showed a statistically significant difference and showed better trueness in the single abutment (P < .05). There was no significant difference in the precision (P = .616). Conclusion: As a result of comparing the accuracy of single and bridge abutments, the error of abutment scan increased with increasing scan area, and the accuracy of bridge abutment model was clinically acceptable in three types of intraoral scanners.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

Conjunction Assessments of the Satellites Transported by KSLV-II and Preparation of the Countermeasure for Possible Events in Timeline (누리호 탑재 위성들의 충돌위험의 예측 및 향후 상황의 대응을 위한 분석)

  • Shawn Seunghwan Choi;Peter Joonghyung Ryu;John Kim;Lowell Kim;Chris Sheen;Yongil Kim;Jaejin Lee;Sunghwan Choi;Jae Wook Song;Hae-Dong Kim;Misoon Mah;Douglas Deok-Soo Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.118-143
    • /
    • 2023
  • Space is becoming more commercialized. Despite of its delayed start-up, space activities in Korea are attracting more nation-wide supports from both investors and government. May 25, 2023, KSLV II, also called Nuri, successfully transported, and inserted seven satellites to a sun-synchronous orbit of 550 km altitude. However, Starlink has over 4,000 satellites around this altitude for its commercial activities. Hence, it is necessary for us to constantly monitor the collision risks of these satellites against resident space objects including Starlink. Here we report a quantitative research output regarding the conjunctions, particularly between the Nuri satellites and Starlink. Our calculation shows that, on average, three times everyday, the Nuri satellites encounter Starlink within 1 km distance with the probability of collision higher than 1.0E-5. A comparative study with KOMPSAT-5, also called Arirang-5, shows that its distance of closest approach distribution significantly differs from those of Nuri satellites. We also report a quantitative analysis of collision-avoiding maneuver cost of Starlink satellites and a strategy for Korea, being a delayed starter, to speed up to position itself in the space leading countries. We used the AstroOne program for analyses and compared its output with that of Socrates Plus of Celestrak. The two line element data was used for computation.