• Title/Summary/Keyword: Industrial Scientific Medical

Search Result 112, Processing Time 0.028 seconds

A Study on Aperture Coupled U-slot Microstrip Antenna using Wideband Stub (광대역 Stub를 이용한 개구 결합 급전 방식의 U 슬롯 마이크로스트립 안테나에 관한 연구)

  • 김현준;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.342-350
    • /
    • 2002
  • In this paper, aperture coupled U-slot microstrip antenna with wideband stub is investigated. The dielectric constant of the substrate is 2.2 and the hight of the substrate is 62 mil. The impedance bandwidth (VSWR<1.5) of U-slot antenna with wideband stub is about 10 %. The bandwidth characteristic of U-slot antenna wish wideband stub is compared with that of antenna without it. And the results of parameter studies of the wideband stub provides the optimum characteristics of bandwidth and matching.

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

Channel Grade Method of multi-mode mobile device for avoiding Interference at WPAN (WPAN에서 간섭을 피하기 위한 멀티모드 단말기 채널등급 방법)

  • Jung, Sungwon;Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT), The IoT enables physical world objects in our surrounding to be connected to the Internet. ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart devices. Accordingly studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi devices using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band. Because serious network performance deterioration of wireless sensor networks. In this paper, we will propose an algorithm that identifies the possibility of using more accurate channels by mixing utilization of interference signal and RSSI (Received Signal Strength Indicator) Min/Max/Activity of Interference signal by wireless sensor nodes. In addition, it will verify our algorithm by using OPNET Network verification simulator.

Design of a Miniaturized High-Isolation Diversity Antenna for Wearable WBAN Applications

  • Kim, Seongjin;Kwon, Kyeol;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • This paper proposes a miniaturized high-isolation diversity antenna for wearable wireless body area network (WBAN) applications. An inverted-F type radiating element is used to reduce the overall dimension of the proposed antenna to $30mm{\times}30mm{\times}2.5mm$. The antenna performance on the human body phantom is analyzed through simulation and the performance of the fabricated antenna is verified by comparing the measured data with that of the simulation when the antenna is placed on a semi-solid flat phantom with equivalent electrical properties of a human body. The fabricated antenna has a 10 dB return loss bandwidth over the Industrial Scientific Medical (ISM) band from 2.35 GHz to 2.71 GHz and isolation is higher than 28 dB at 2.45 GHz. The measured peak gain of antenna elements # 1 and # 2 is -0.43 dBi and -0.54 dBi, respectively. Performance parameters are analyzed, including envelope correlation coefficient (ECC), mean effective gain (MEG), and the MEG ratio. In addition, the specific absorption ratio (SAR) distributions of the proposed antenna are measured for consideration in use.

Miniaturization of SIW-Based Linearly Polarized Slot Antennas for Software-Defined Radar

  • Han, Jun Yong;Yoon, Seong Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Two substrate integrated waveguide (SIW)-based antennas for the application of software-defined radar are proposed and investigated herein. It is usually well known that SIWs are easily integrated, lightweight, have low insertion loss, and low interference levels compared to conventional microstrip structures. The primary function of the proposed antennas is to transmit continuous waves for indoor motion detection, with the lowest amount of loss and an appropriate amount of gain. Moreover, the results of this study show that the size of the antenna can be reduced significantly (i.e., by about 40%) by applying a meander line structure. The operating frequencies of the proposed antennas are both within the industrial, scientific, and medical band (i.e., 2.4-2.4835 GHz). Measured results of return loss are -16 dB and -20 dB at 2.435 GHz and 2.43 GHz, respectively, and the measured gain is 8.2 dBi and 5.5 dBi, respectively. Antenna design and verification are undertaken through commercially available full electromagnetic software.

A study on the design of an Inverted-F Internal Antenna for the 2.4GHz local wireless communication system (2.4GHz 근거리 무선 통신용 역-F형 내부 안테나 설계에 관한 연구)

  • 주성남;박청룡;손달윤;김장식;김영남;김갑기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.100-103
    • /
    • 2003
  • In this paper, the characteristics of an inverted-F antenna for the 2.4GHz local wireless communication system have been analysed in terms of the variation of design parameters. The antenna can be integrated on printed circuit board, and the characteristics in terms of the variation of the gap between feed line and shorting stub, gap between antenna's leg and ground plane, antenna leg's width, substrate's height and dielectric constant are analysed. By using these characterization plot of design parameter, the tuning techniques are proposed to design optimum antenna. The designed antenna has 6.4% frequency bandwidth for VSWR under 1.5 and 3dB gain.

  • PDF

design of an Inverted-F Internal Antenna for the 2.4GHz local wireless communication system (2.4GHz 근거리 무선 통신용 역-F형 내부 안테나 설계)

  • 김영남;정명래;김갑기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1103-1108
    • /
    • 2003
  • In this paper, the characteristics of an inverted-F antenna for the 2.4GHz local wireless communication system have been analysed in terms of the variation of design parameters. The antenna can be integrated on printed circuit board, and the characteristics in terms of the variation of the gap between feed line and shorting stub, gap between antenna's leg and ground plane, antenna leg's width, substrate's height and dielectric constant are analysed. By using these characterization plot of design parameter, the tuning techniques are proposed to design optimum antenna. The designed antenna has 6.4 % frequency bandwidth for VSWR under 1.5 and 3dB gain.

Analysis and Experiment of 2.4GHz Radio Frequency Interference for Wireless Sensor Networks-based Applications (WSNs 기반의 어플리케이션을 위한 2.4GHz 대역의 주파수 간섭 분석 및 검증 실험)

  • Kwon, Jong-Won;Ahn, Gwang-Hoon;Kim, Seok-Rae;Kim, Hie-Sik;Kang, Sang-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.290-292
    • /
    • 2009
  • With advance in technologies for wireless sensor networks(WSNs), 2.4 GHz band has become gradually attractive due to increase in low-power wireless communication devices. Especially ZigBee(IEEE 802.15.4-based) technology whose frequency band includes the 2.4GHz industrial, scientific and medical band providing nearly worldwide availability has been universally applicable to a various remote monitoring system and applications related home network system. However network throughput of these systems is significantly deteriorated due to this ISM band is a license-exemption used in a variety of low-power wireless communication devices. For instance, other IEEE 802 wireless standards such as Bluetooth, WLAN, Wi-Fi and others cause radio interference to ZigBee. The experiments was carried out to analyze radio frequency interference between heterogeneous devices using ISM bands to improve the limited frequency utility factor. Finally this paper suggests a frequency hopping-based adaptive multi-channel methods to decrease interference with empirical results.

  • PDF

Genetic Algorithm Optimization of LNA for Wireless Applications in 2.4GHz Band

  • Kim Ji-Yoon;Yang Doo-Yeong
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.29-33
    • /
    • 2006
  • The common-source low noise amplifier(LNA) with inductive degeneration using a genetic algorithm is designed and tested for a down converter in an industrial, scientific and medical (ISM) band application and a wireless broadband internet service (WiBro). The genetic algorithm optimizes the reflection coefficients to be well matched the input and output ports between multistage transistor amplifiers, and it generates low voltage standing wave ratio as well as gain flatness of the amplifier. The stability and the gain flatness of the LNA have been improved by combining the matching circuits and the series feedback microstrip lines with inductive degeneration at common-source port. In the frequency range of ISM band and WiBro application operating at $2.3GHz{\sim}2.5GHz$, the measured power gain and maximum voltage standing wave ratio (VSWR) of the LNA are $41{\pm}0.5dB$ and 1.3, and the noise figure of the LNA is lower than 0.85dB. The above results are agreed well with the theoretical values of the amplifiers.

  • PDF

Analysis of the Research on Augmented Reality Using Knowledge Domain Visualization based on Co-Citation Analysis (동시인용분석 기반 지식영역 가시화 기법을 활용한 증강현실 연구 분석)

  • Lee, Jeonghwan;Lee, Jae Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.5
    • /
    • pp.309-320
    • /
    • 2013
  • Augmented reality (AR) is considered to be an excellent user interface to a 3D information space embedded within physical reality. For this reason, it has been applied to various applications such as design, medical service, interaction, and collaboration. However, there is no formal way of analyzing the research trend and evolution of augmented reality. This paper identifies the research trend and change in augmented reality (AR) via co-citation analysis. The co-citation analysis provides how the AR research has evolved, who are main contributors, and which papers suggest essential and influencing impact. To systematically analyze the cocitation, we have retrieved 1,145 papers from the Web of Science and applied a scientomertric analysis using CiteSpace. Based on the co-citation analysis of authors and documents, it is possible to analyze the evolution of augmented reality, key authors and papers, and breakthroughs. We have also compared the proposed approach with survey papers written by experts so that the result of the co-citation analysis can compromise the qualitative result done by experts, and thus it can provide a different view and insight for visualizing the research on augmented reality.