• Title/Summary/Keyword: Industrial Clustering

Search Result 401, Processing Time 0.023 seconds

An Energy Saving Method Using Cluster Group Model in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 그룹 모델을 이용한 에너지 절약 방안)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4991-4996
    • /
    • 2010
  • Clustering method in wireless sensor network is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. Even though cluster group model is based on clustering, it differs from previous method that reducing the total energy consumption by separating energy overload to cluster group head and cluster head. In this thesis, I calculate the optimal cluster group number and cluster number in this kind of cluster group model according to threshold of energy consumption model. By using that I can minimize the total energy consumption in sensor network and maximize the network lifetime. I also show that proposed cluster group model is better than previous clustering method at the point of network energy efficiency.

Clustering of Seoul Public Parking Lots and Demand Prediction (서울시 공영주차장 군집화 및 수요 예측)

  • Jeongjoon Hwang;Young-Hyun Shin;Hyo-Sub Sim;Dohyun Kim;Dong-Guen Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.497-514
    • /
    • 2023
  • Purpose: This study aims to estimate the demand for various public parking lots in Seoul by clustering similar demand types of parking lots and predicting the demand for new public parking lots. Methods: We examined real-time parking information data and used time series clustering analysis to cluster public parking lots with similar demand patterns. We also performed various regression analyses of parking demand based on diverse heterogeneous data that affect parking demand and proposed a parking demand prediction model. Results: As a result of cluster analysis, 68 public parking lots in Seoul were clustered into four types with similar demand patterns. We also identified key variables impacting parking demand and obtained a precise model for predicting parking demands. Conclusion: The proposed prediction model can be used to improve the efficiency and publicity of public parking lots in Seoul, and can be used as a basis for constructing new public parking lots that meet the actual demand. Future research could include studies on demand estimation models for each type of parking lot, and studies on the impact of parking lot usage patterns on demand.

Generalized Clustering Algorithm for Part-Machine Grouping with Alternative Process Plans (대체가공경로를 가지는 부품-기계 군집 문제를 위한 일반화된 군집 알고리듬)

  • Kim, Chang-Ouk;Park, Yun-Sun;Jun, Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.281-288
    • /
    • 2001
  • We consider in this article a multi-objective part-machine grouping problem in which parts have alternative process plans and expected annual demand of each part is known. This problem is characterized as optimally determining part sets and corresponding machine cells such that total sum of distance (or dissimilarity) between parts and total sum of load differences between machines are simultaneously minimized. Two heuristic algorithms are proposed, and examples are given to compare the performance of the algorithms.

  • PDF

Discovering Meaningful Trends in the Inaugural Addresses of United States Presidents Via Text Mining (텍스트마이닝을 활용한 미국 대통령 취임 연설문의 트렌드 연구)

  • Cho, Su Gon;Cho, Jaehee;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.453-460
    • /
    • 2015
  • Identification of meaningful patterns and trends in large volumes of text data is an important task in various research areas. In the present study, we propose a procedure to find meaningful tendencies based on a combination of text mining, cluster analysis, and low-dimensional embedding. To demonstrate applicability and effectiveness of the proposed procedure, we analyzed the inaugural addresses of the presidents of the United States from 1789 to 2009. The main results of this study show that trends in the national policy agenda can be discovered based on clustering and visualization algorithms.

Design of One-Class Classifier Using Hyper-Rectangles (Hyper-Rectangles를 이용한 단일 분류기 설계)

  • Jeong, In Kyo;Choi, Jin Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.439-446
    • /
    • 2015
  • Recently, the importance of one-class classification problem is more increasing. However, most of existing algorithms have the limitation on providing the information that effects on the prediction of the target value. Motivated by this remark, in this paper, we suggest an efficient one-class classifier using hyper-rectangles (H-RTGLs) that can be produced from intervals including observations. Specifically, we generate intervals for each feature and integrate them. For generating intervals, we consider two approaches : (i) interval merging and (ii) clustering. We evaluate the performance of the suggested methods by computing classification accuracy using area under the roc curve and compare them with other one-class classification algorithms using four datasets from UCI repository. Since H-RTGLs constructed for a given data set enable classification factors to be visible, we can discern which features effect on the classification result and extract patterns that a data set originally has.

A Study on Web-User Clustering Algorithm for Web Personalization (웹 개인화를 위한 웹사용자 클러스터링 알고리즘에 관한 연구)

  • Lee, Hae-Kag
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2375-2382
    • /
    • 2011
  • The user clustering for web navigation pattern discovery is very useful to get preference and behavior pattern of users for web pages. In addition, the information by the user clustering is very essential for web personalization or customer grouping. In this paper, an algorithm for clustering the web navigation path of users is proposed and then some special navigation patterns can be recognized by the algorithm. The proposed algorithm has two clustering phases. In the first phase, all paths are classified into k-groups on the bases of the their similarities. The initial solution obtained in the first phase is not global optimum but it gives a good and feasible initial solution for the second phase. In the second phase, the first phase solution is improved by revising the k-means algorithm. In the revised K-means algorithm, grouping the paths is performed by the hyperplane instead of the distance between a path and a group center. Experimental results show that the proposed method is more efficient.

A Cluster Group Head Selection using Trajectory Clustering Technique (궤적 클러스터링 기법을 이용한 클러스터 그룹 헤드 선정)

  • Kim, Jin-Su;Shin, Seung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5865-5872
    • /
    • 2011
  • Multi-hop communication in clustering system is the technique that forms the cluster to aggregate the sensing data and transmit them to base station through midway cluster head. Cluster head around base station send more packet than that of far from base station. Because of this hot spot problem occurs and cluster head around base station increases energy consumption. In this paper, I propose a cluster group head selection using trajectory clustering technique(CHST). CHST select cluster head and group head using trajectory clustering technique and fitness function and it increases the energy efficiency. Hot spot problem can be solved by selection of cluster group with multi layer and balanced energy consumption using it's fitness function. I also show that proposed CHST is better than previous clustering method at the point of network energy efficiency.

An Energy Consumption Model using Hierarchical Unequal Clustering Method (계층적 불균형 클러스터링 기법을 이용한 에너지 소비 모델)

  • Kim, Jin-Su;Shin, Seung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2815-2822
    • /
    • 2011
  • Clustering method in wireless sensor networks is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. In this paper, I propose the hierarchical unequal clustering method using cluster group model. This divides the entire network into two layers. The data aggregated from layer 2 consisted of cluster group is sent to layer 1, after re-aggregation the total data is sent to base station. This method decreases whole energy consumption by using cluster group model with multi-hop communication architecture. Hot spot problem can be solved by establishing unequal cluster. I also show that proposed hierarchical unequal clustering method is better than previous clustering method at the point of network energy efficiency.

Runtime Prediction Based on Workload-Aware Clustering (병렬 프로그램 로그 군집화 기반 작업 실행 시간 예측모형 연구)

  • Kim, Eunhye;Park, Ju-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.56-63
    • /
    • 2015
  • Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.

An Ensemble Model for Machine Failure Prediction (앙상블 모델 기반의 기계 고장 예측 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.