• Title/Summary/Keyword: Industrial Clustering

Search Result 401, Processing Time 0.028 seconds

The Analysis of the effect of the Regeneration Project of the Decrepit Industrial Complex by the Private-led Aggregation Governance - Focusing on the comparison with the Public-led Project - (민간주도 집단화 거버넌스 구축에 의한 노후산업단지 재생사업의 효과분석 - 공공주도 사업과의 비교를 중심으로 -)

  • Jung, Hyun-Jin;Kwon, Young-Sang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.10
    • /
    • pp.131-142
    • /
    • 2018
  • Being dealt in Alfred Weber's Theory of the location of Industries, a lot of economic benefits can be obtained through aggregation and clustering of industrial facilities, which derived to the development of industrial complexes in Korea. However, with the IMF economic crisis as well as various institutional changes, the framework of aggregation and clustering of industries is broken, which led to individual developments that took place without any consideration of surrounding industries. For reformation of these condition of industrial complexes, national government-led regeneration projects are being carried out currently. However, national government-led projects mainly focus on profitable projects such as officetel and hotel that are irrelevant to exist composition of industrial complexes which is usually manufacturing base industries and are unable to solve the fundamental problems of industrial complexes. Thus, a necessity of industry clustering is deduced through case analysis of actual private-led manufacturing industry cluster with governance and analysis of benefits on financial, spatial and environmental aspects. In addition, implications on the necessity follow base on factorial analysis on the benefit of clustering development than individual development as well as analysis on the measures taken for successful clustering.

Efficient Data Clustering using Fast Choice for Number of Clusters (빠른 클러스터 개수 선정을 통한 효율적인 데이터 클러스터링 방법)

  • Kim, Sung-Soo;Kang, Bum-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, this method has the limitation to be used with fixed number of clusters because of only considering the intra-cluster distance to evaluate the data clustering solutions. Silhouette is useful and stable valid index to decide the data clustering solution with number of clusters to consider the intra and inter cluster distance for unsupervised data. However, this valid index has high computational burden because of considering quality measure for each data object. The objective of this paper is to propose the fast and simple speed-up method to overcome this limitation to use silhouette for the effective large-scale data clustering. In the first step, the proposed method calculates and saves the distance for each data once. In the second step, this distance matrix is used to calculate the relative distance rate ($V_j$) of each data j and this rate is used to choose the suitable number of clusters without much computation time. In the third step, the proposed efficient heuristic algorithm (Group search optimization, GSO, in this paper) can search the global optimum with saving computational capacity with good initial solutions using $V_j$ probabilistically for the data clustering. The performance of our proposed method is validated to save significantly computation time against the original silhouette only using Ruspini, Iris, Wine and Breast cancer in UCI machine learning repository datasets by experiment and analysis. Especially, the performance of our proposed method is much better than previous method for the larger size of data.

Improving Process Mining with Trace Clustering (자취 군집화를 통한 프로세스 마이닝의 성능 개선)

  • Song, Min-Seok;Gunther, C.W.;van der Aalst, W.M.P.;Jung, Jae-Yoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.460-469
    • /
    • 2008
  • Process mining aims at mining valuable information from process execution results (called "event logs"). Even though process mining techniques have proven to be a valuable tool, the mining results from real process logs are usually too complex to interpret. The main cause that leads to complex models is the diversity of process logs. To address this issue, this paper proposes a trace clustering approach that splits a process log into homogeneous subsets and applies existing process mining techniques to each subset. Based on log profiles from a process log, the approach uses existing clustering techniques to derive clusters. Our approach are implemented in ProM framework. To illustrate this, a real-life case study is also presented.

$F_n$-Measure : An External Cluster Evaluation Measure (클러스터 평가 외부기준 척도 $F_n$-Measure)

  • Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.244-248
    • /
    • 2012
  • F-Measure is one of the external measures for evaluating the validity of clustering results. Though it has clear advantages over other widely used external measures such as Purity and Entropy, F-Measure has inherently been less sensitive than other validity measures. This insensitivity owes to the definition of F-Measure that counts only most influential portions. In this research, we present $F_n$-Measure, an external cluster evaluation measure based on F-Measure. $F_n$-Measure is so sensitive that it can detect their difference in the cases that F-Measure cannot detect the difference in clustering results. We compare $F_n$-Measure to F-Measure for a few clustering results and show which measure draws better result based upon homogeneity and completeness.

Validation Measures of Bicluster Solutions

  • Lee, Young-Rok;Lee, Jeong-Hwa;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.101-108
    • /
    • 2009
  • Biclustering is a method to extract subsets of objects and features from a dataset which are characterized in some way. In contrast to traditional clustering algorithms which group objects similar in a whole feature set, biclustering methods find groups of objects which have similar values or patterns in some features. Both in clustering and biclustering, validating how much the result is informative or reliable is a very important task. Whereas validation methods of cluster solutions have been studied actively, there are only few measures to validate bicluster solutions. Furthermore, the existing validation methods of bicluster solutions have some critical problems to be used in general cases. In this paper, we review several well-known validation measures for cluster and bicluster solutions and discuss their limitations. Then, we propose several improved validation indices as modified versions of existing ones.

Analysis of Massive Scholarly Keywords using Inverted-Index based Bottom-up Clustering (역인덱스 기반 상향식 군집화 기법을 이용한 대규모 학술 핵심어 분석)

  • Oh, Heung-Seon;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.758-764
    • /
    • 2018
  • Digital documents such as patents, scholarly papers and research reports have author keywords which summarize the topics of documents. Different documents are likely to describe the same topic if they share the same keywords. Document clustering aims at clustering documents to similar topics with an unsupervised learning method. However, it is difficult to apply to a large amount of documents event though the document clustering is utilized to in various data analysis due to computational complexity. In this case, we can cluster and connect massive documents using keywords efficiently. Existing bottom-up hierarchical clustering requires huge computation and time complexity for clustering a large number of keywords. This paper proposes an inverted index based bottom-up clustering for keywords and analyzes the results of clustering with massive keywords extracted from scholarly papers and research reports.

Unification of Kohonen Neural network with the Branch-and-Bound Algorithm in Pattern Clustering

  • Park, Chang-Mok;Wang, Gi-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.134-138
    • /
    • 1998
  • Unification of Kohone SOM(Self-Organizing Maps) neural network with the branch-and-bound algorithm is presented for clustering large set of patterns. The branch-and-bound search technique is employed for designing coarse neural network learning paradaim. Those unification can be use for clustering or calssfication of large patterns. For classfication purposes further usefulness is possible, since only two clusters exists in the SOM neural network of each nodes. The result of experiments show the fast learning time, the fast recognition time and the compactness of clustering.

  • PDF

A Study of an Extended Fuzzy Cluster Analysis on Special Shape Data (특별한 형태의 자료에 대한 확장된 Fuzzy 집락분석방법에 관한 연구)

  • 임대혁
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.6
    • /
    • pp.36-41
    • /
    • 2002
  • We consider the Fuzzy clustering which is devised for partitioning a set of objects into a certain number of groups by assigning the membership probabilities to each object. The researches carried out in this field before show that the Fuzzy clustering concept is involved so much that for a certain set of data, the main purpose of the clustering cannot be attained as desired. Thus we propose a new objective function, named as Fuzzy-Entroppy Function in order to satisfy the main motivation of the clustering which is classifying the data clearly. Also we suggest Mean Field Annealing Algorithm as an optimization algorithm rather than the ISODATA used traditionally in this field since the objective function is changed. we show the Mean Field Annealing Algorithm works pretty well not only for the new objective function but also for the classical Fuzzy objective function by indicating that the local minimum problem resulted from the ISODATA can be improved.

A Linear Clustering Method for the Scheduling of the Directed Acyclic Graph Model with Multiprocessors Using Genetic Algorithm (다중프로세서를 갖는 유방향무환그래프 모델의 스케쥴링을 위한 유전알고리즘을 이용한 선형 클러스터링 해법)

  • Sung, Ki-Seok;Park, Jee-Hyuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.591-600
    • /
    • 1998
  • The scheduling of parallel computing systems consists of two procedures, the assignment of tasks to each available processor and the ordering of tasks in each processor. The assignment procedure is same with a clustering. The clustering is classified into linear or nonlinear according to the precedence relationship of the tasks in each cluster. The parallel computing system can be modeled with a Directed Acyclic Graph(DAG). By the granularity theory, DAG is categorized into Coarse Grain Type(CDAG) and Fine Grain Type(FDAG). We suggest the linear clustering method for the scheduling of CDAG using the genetic algorithm. The method utilizes a properly that the optimal schedule of a CDAG is one of linear clustering. We present the computational comparisons between the suggested method for CDAG and an existing method for the general DAG including CDAG and FDAG.

  • PDF

Clustering Data with Categorical Attributes Using Inter-dimensional Association Rules and Hypergraph Partitioning (차원간 연관관계와 하이퍼그래프 분할법을 이용한 범주형 속성을 가진 데이터의 클러스터링)

  • 이성기;윤덕균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.41-50
    • /
    • 2001
  • Clustering in data mining is a discovery process that groups a set of data such that the intracluster similarity is maximized and intercluster similarity is minimized. The discovered clusters from clustering process are used to explain the characteristics of the data distribution. In this paper we propose a new methodology for clustering related transactions with categorical attributes. Our approach starts with transforming general relational databases into a transactional databases. We make use of inter-dimensional association rules for composing hypergraph edges, and a hypergraph partitioning algorithm for clustering the values of attributes. The clusters of the values of attributes are used to find the clusters of transactions. The suggested procedure can enhance the interpretation of resulting clusters with allocated attribute values.

  • PDF