• Title/Summary/Keyword: Inductor-Capacitor Output Filter

Search Result 21, Processing Time 0.022 seconds

Characteristics of Output Voltage and Input Current of Quasi Z-Source Converter with a Diode-Capacitor Output Filter (다이오드-커패시터 출력필터를 갖는 Quasi Z-소스 컨버터의 입력 전류와 출력전압 특성)

  • Lim, Young-Cheol;Kim, Se-Jin;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.16-28
    • /
    • 2012
  • This paper proposes a quasi Z-source converter(QZSC) with a diode-capacitor output filter to improve the output DC voltage boost ability. The proposed converter has the same quasi Z-source network topology compared with the conventional converter. But the proposed method is adopted a diode-capacitor filter as its output filter, since the conventional method is used an inductor-capacitor as its output filter. Under the condition of the same input-output DC voltage, the proposed method has more lower shoot-through duty ratio than the conventional method. Also, because the proposed converter has same voltage boost factor under lower shoot-through duty ratio compared with the conventional converter, the proposed converter can be operated with the lower capacitor voltage of Z-source network and the lower input current. To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed to acquire the output DC voltage 120[V] under the input DC voltage 80[V]. And the capacitor voltage and inductor current in Z-source network, the output voltage of each converter were compared and discussed.

Output Inductor Less Phase Shift Full Bridge Converter with Current Stress Reduction Technique for Server Power Application

  • Lee, Woo-Jin;Park, Ki-Bum;Heo, Tae-Won;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.502-504
    • /
    • 2008
  • A new output inductor less phase shift full bridge converter with current reduction technique for server power application is proposed in this paper. The proposed converter can reduce the current stress by using the auxiliary circuit. Since the auxiliary circuit causes the additional resonance between the leakage inductor and auxiliary capacitor before the powering period, the proposed converter has lower current stress even no output filter inductor. Small size and circulating energy can be also the merits of the proposed converter. The operational principles and analysis are presented. Experimental results demonstrate that the current stress can be reduced effectively by using the auxiliary circuit without large output filter inductor.

  • PDF

Active Damping Characteristics on Virtual Series Resistances of LCL Filter for Three-phase Grid-connected Inverter (인덕터 내부저항을 고려한 LCL 필터의 능동댐핑 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.88-93
    • /
    • 2016
  • LCL filters are widely used in high-order harmonics attenuation of output currents in grid-connected inverters. However, output currents of grid-connected inverters with LCL filters can become unstable because of the resonance of the filters. Given that the characteristics of output currents in inverters mostly depend on filter performance, the exact analysis of filters by considering parasitic components is necessary for both harmonics attenuation and current control. LCL filters have three or four parasitic components: the series and/or parallel resistance of the filter capacitor and the series resistance of the two filter inductors. Most studies on LCL filters have focused on the parasitic components of the filter capacitor. Although several studies have addressed the parasitic components of the filter inductor at the inverter side, no study has yet investigated the concurrent effects of series resistance in both filter inductors in detail. This paper analyzes LCL filters by considering series resistance in both filter inductors; it proposes an active damping method based on the virtual series resistance of LCL filters. The performance of the proposed active damping is then verified through both simulation and experiment using Hardware-in-the-Loop Simulator(HILS).

A High Efficiency ZVS PWM Asymmetrical Half Bridge Converter for Plasma Display Panel Sustaining Power Modules

  • Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.67-75
    • /
    • 2005
  • A high efficiency ZVS PWM asymmetrical half bridge converter for a plasma display panel (PDP) sustaining power modules is proposed in this paper. To achieve the ZVS of power switches for the wide load range, a small additional inductor L/sub 1kg/, which also acts as an output filter inductor, is serially inserted into the transformer's primary side. At that point, to solve the problem of ringing in the secondary rectifier caused by L/sub 1kg/, the proposed circuit employs a structure without the output filter inductor, which helps the voltages across rectifier diodes to be clamped at the output voltage. Therefore, no dissipative RC (resistor capacitor) snubber for rectifier diodes is needed and a high efficiency as well as low noise output voltage can be realized. In addition, since it has no large output inductor filter, the asymmetrical half bridge converter features a simpler structure, lower cost, less mass, and lighter weight. In addition, since all energy stored in L/sub 1kg/ is transferred to the output side, the circulating energy problem can be effectively solved. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 425W, 385Vdc/170Vdc prototype are presented.

A High Efficiency ZVS PWM Asymmetrical Half Bridge Converter for Plasma Display Panel Sustaining Power Module

  • Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.537-541
    • /
    • 2004
  • A high efficiency ZVS PWM asymmetrical half bridge converter for a plasma display panel (PDP) sustaining power module is proposed in this paper. To achieve the ZVS of power switches for the wide fond range, n small additional inductor $L_{lkg}$, which also acts as an output filter inductor, is serially inserted to the transformer primary side. Then, to solve the problem related to ringing in the secondary rectifier caused by $L_{lkg}$, the proposed circuit employs a structure without the output filter inductor, which helps the voltages across rectifier diodes to be clamped at the output voltage. Therefore, no dissipative RC (resistor capacitor) snubber for rectifier diodes is needed and n high efficiency as well as low noise output voltage can be realized. In addition, since it has no large output inductor filter, it features a simpler structure, lower cost, less mass, and lighter weight. Moreover, since all energy stored in $L_{lkg}$ is transferred to the output side, the circulating energy problem can be effectively solved. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 425W, 385Vdc/170Vdc prototype are presented.

  • PDF

A utilization of PCB capacitor to reduce the output voltage ripple in Flyback SMPS (PCB 캐패시터를 이용한 플라이백 SMPS 출력 리플 저감 대책)

  • Kim T.G.;Chung G.B.;Lee W.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.102-105
    • /
    • 2003
  • The leakage inductance of the High frequency Transformer(HFT) in the flyback topology can be used an inductor of the Low Pass Filter(LPF) to reduce ripple and ripple noise in the output voltage. But, the values of leakage inductance and magnetizing inductance in the HFT are within $\pm20[{\%}]$). And the operating temperature of the HFT increased by the leakage inductance. Therefore, the leakage inductance of the HFT in the flyback topology has minimum and the LPF has non-polarity ceramic capacitor in the output stage. In this paper, the LPF in the flyback topoBogy takes PCB capacitor using double layer of PCB without non-polarity ceramic capacitor. Its experimental results show the reduced ripple noise and the reduced ripple in the output stage.

  • PDF

Design of an LCL-Filter for Space Vector PWM in a Grid-Connected System (3상 계통 연계 인버터의 SVPWM을 위한 LCL-필터 설계)

  • Seo, Seung Gyu;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.538-541
    • /
    • 2016
  • This paper proposes an LCL-filter design for space vector pulse width modulation (SVM) in grid-connected three-phase inverter systems. Although there are a several studies in progress, the existing methods are erroneous because they do not focus on the other switching methods. This paper presents the design methodology for an LCL-filter that is optimized for SVM switching operations. The design procedure for the LCL-filter is presented step-by-step. The inverter-side inductor was determined by an analysis of the ripple components, mathematically. Based on the reactive power absorption ratio, the filter capacitor was determined. The grid-side inductor was determined by the ripple attenuation factor of the output current. Experimental results verify the validity of the design method for the LCL-filter.

A Performance Comparison of the Current Feedback Schemes with a New Single Current Sensor Technique for Single-Phase Full-Bridge Inverters

  • Choe, Jung-Muk;Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.621-630
    • /
    • 2016
  • In this paper, a single current sensor technique (SCST) is proposed for single-phase full-bridge inverters. The proposed SCST measures the currents of multiple branches at the same time, and reconstructs the average inductor, capacitor, and load current in a single switching cycle. Since all of the branches' current in the LC filter and the load are obtained using the SCST, both the inductor and the capacitor current feedback schemes can be selectively applied while taking advantages of each other. This paper also analyzes both of the current feedback schemes from the view point of the closed-loop output impedance. The proposed SCST and the analysis in this paper are verified through experiments on a 3kVA single-phase uninterruptible power supply (UPS).

Output Filter and Controller designs for UPS Inverter with Single-Phase (단상 UPS 인버터의 출력필터와 제어기 설계)

  • Kim, Jae-Sig;Choi, Chang-Ho;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1064-1066
    • /
    • 2001
  • In this paper, the harmonic components generated by those two sources are analyzed separately based on the transfer function and shown as the closed form considering the switching frequency, speed of the control processor, gain of the controller, and the inductor and capacitor value of L-C filter. A design procedure is described with one flow chart and explained step by step.

  • PDF

Three Phase Embedded Z-Source Inverter (3상 임베디드 Z-소스 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.