• Title/Summary/Keyword: Inductive coupled plasma

Search Result 73, Processing Time 0.031 seconds

Newly Designed Ion Beam Etcher with High Etch Rate

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.366-370
    • /
    • 2015
  • New ion beam etcher (IBE) using a magnetized inductively coupled plasma (M-ICP) has been developed. The magnetic flux density distributions inside the upper chamber, where the plasma is generated by inductive coupling, were successfully optimized by arranging a pair of circular coils very carefully. More importantly, the proposed M-ICP IBE exhibits higher etch rate than ICP.

A Study on Bosch etching by Inductive Coupled Plasma (ICP를 이용한 Bosch 식각에 관한 연구)

  • Kim, Jin-Hyun;Ryoo, Kun-Kul;Kim, Jang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.77-80
    • /
    • 2003
  • MEMS(Micro Electro Mechanical System) 기술에서 실리콘 식각기술의 중요성으로 플라즈마 식각기술의 개발이 꾸준히 진행되고 있다. 이중에서 ICP(Inductive Coupled Plasma)는 기존의 증착장치에 유도결합식 플라즈마를 추가로 발생시켜 증착막의 특성을 획기적으로 개선시키는 가장 최근에 개발된 기술이며, 이용에너지를 증가시키지 않고도 이용밀도를 높이고 이용업자들에 방향성을 가할 수 있는 새로운 플라즈마 기술로, 주로 MEMS 제조공정에 응용되고 있다. 본 연구에서는 STS-ICP $ASE^{HR}$을 이용하여 식각과 증착공정을 반복하여 식각을 하는 Bosch 식각에 관하여 연구하였다 STS-ICP $ASE^{HR}$ 장비의 Platen power, Coil power 및 Process pressure에 다양한 변화를 주어 각 변수에 따른 식각속도를 관찰하였다. 각 공정별 변수를 변화시킨 결과 Platen power 12W, Coil power 500W, 식각/Passivation Cycle 6/7sec 일 경우 식각속도는 $1.2{\mu}m$/min 이었고, Sidewall profile은 $90{\pm}0.7^{\circ}$로 나타나 매우 우수한 결과를 보였다.

  • PDF

3D Etching Profile used Inductive Coupled Plasma (ICP) Source with Ambipolar Drift and Binary-Collision Effect. (쌍극성표동 효과와 이체충돌효과를 고려한 ICP(Inductive Coupled Plasma) 3차원 식각)

  • 이영직;이강환;이주율;강정원;문원하;손명식;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.891-894
    • /
    • 1999
  • ICP reactor produces high-density and high-uniformity plasma in large area, are has excellent characteristic of direction in the case of etching. Until now, many algorithms used one mesh method. These algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously. And difficult consider am-bipolar drift effect.

  • PDF

Dry etching of pt thin film in inductive coupled BCl$_{3}$/Cl$_{2}$ plasmas (유도 결합 BCl$_{3}$/Cl$_{2}$ 플라즈마내에서 Pt 박막의 건식 식각)

  • 김남훈;김창일;권광호;장의구
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.375-378
    • /
    • 1998
  • Platinum thin film which hardly form volatile compounds with any reactive gas at normal process temperature was etched in inductive coupled BCl$_{3}$/Cl$_{2}$ plasma. The etch rate of platinum thin film increased with increasing Cl$_{2}$/(Cl$_{2}$ + BCl$_{3}$) ratio. That reasoned increasing of ion current density.

  • PDF

Development of Internal linear Inductively Coupled Plasma Sources for Large Area Flat Penal Display Processing

  • Lim, Jong-Hyeuk;Park, Jung-Kyun;Kim, Kyong-Nam;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.933-936
    • /
    • 2007
  • An inductively coupled plasma source with internaltype linear inductive antennas named as "multiple Utype antenna" was developed for the substrate size of $2,300mm\;{\times}\;2,000mm$. High density plasmas on the order of $1.18\;{\times}\;10^{11}\;cm^{-3}$ could be obtained and the RF power of 8kW with good plasma stability.

  • PDF

Analysis of Electrical Property on Inductively Coupled Ar Plasma for Gas Pressure (유도결합형 Ar 플라즈마의 압력에 따른 전기적 특성분석)

  • 조주웅;이영환;김광수;허인성;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.133-136
    • /
    • 2004
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56(MHz) have been measured over a wide range of power at gas pressure ranging from 1∼70(mTorr).

Development of New Etching Algorithm for Ultra Large Scale Integrated Circuit and Application of ICP(Inductive Coupled Plasma) Etcher (초미세 공정에 적합한 ICP(Inductive Coupled Plasma) 식각 알고리즘 개발 및 3차원 식각 모의실험기 개발)

  • 이영직;박수현;손명식;강정원;권오근;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.942-945
    • /
    • 1999
  • In this work, we proposed Proper etching algorithm for ultra-large scale integrated circuit device and simulated etching process using the proposed algorithm in the case of ICP (inductive coupled plasma) 〔1〕source. Until now, many algorithms for etching process simulation have been proposed such as Cell remove algorithm, String algorithm and Ray algorithm. These algorithms have several drawbacks due to analytic function; these algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between Projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously In order to apply ULSI process simulation, algorithm considering above mentioned interactions at the same time is needed. Proposed algorithm calculates interactions both in plasma source region and in target material region, and uses BCA (binary collision approximation4〕method when ion impact on target material surface. Proposed algorithm considers the interaction between source ions in sheath region (from Quartz region to substrate region). After the collision between target and ion, reflected ion collides next projectile ion or sputtered atoms. In ICP etching, because the main mechanism is sputtering, both SiO$_2$ and Si can be etched. Therefore, to obtain etching profiles, mask thickness and mask composition must be considered. Since we consider both SiO$_2$ etching and Si etching, it is possible to predict the thickness of SiO$_2$ for etching of ULSI.

  • PDF

Oxide etching characteristics and Etched Profiles by the Enhanced Inductive Coupled Plasma (산화막 식각에 적용된 E-ICP효과와 형상단면비교)

  • 조수범;송호영;박세근;오범환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.612-615
    • /
    • 2000
  • The etch rate of $SiO_2$ in Enhanced - Inductive Coupled Plasma (E-ICP) and CW-ICP systems are investigated. As addition of $O_2$ to $CF_4$ gas increases oxide etch rate, E-ICP etching shows the highest etch rate (about 6000A) at an optimized condition with 30% $O_2$ in $CF_4$ 70Hz at the modulation frequency of 70Hz. E-ICP also shows better etch profile than CW-ICP.

  • PDF

Ar Gas properties of Inductively Coupled Plasma for Input Power (유도결합형 플라즈마에서 압력에 따른 Ar Gas의 특성분석)

  • Jo, Ju-Ung;Lee, Y.H.;Her, In-Sung;Kim, Kwang-Soo;Choi, Yong-Sung;Lee, Jong-Chan;Park, Dea-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1704-1706
    • /
    • 2003
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56 [MHz] have been measured over a wide range of power at gas pressure ranging from $1{\sim}70$ [mTorr].

  • PDF