• Title/Summary/Keyword: Inductive Charging

Search Result 33, Processing Time 0.033 seconds

Receiving Pad Identification Coil for Wireless Charging of Electric Vehicle (전기자동차 무선 충전용 수신패드 식별코일의 형상 설계 및 운용 방안)

  • Dong-Hyeon, Sim;Hyeon-Woo, Jo;Hun, Heo;Ju-A, Lee;Won-Jin, Son;Byoung-Kuk, Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.455-463
    • /
    • 2022
  • This study proposes a receiving pad identification coil for wireless charging of electric vehicles. The proposed coil identifies the shape of the receiving pad through magnetic coupling with the receiving pad. Therefore, the shape of the coil is designed to show the different magnetic properties of each receiving pad. The accuracy of this design is verified through finite element method simulation. Furthermore, the operation method of the secondary pad identification circuit is described, and the appropriate magnitude and length of the pulse voltage applied to this circuit for receiving pad identification are derived through simulation. The performance of the proposed identification coil set is verified by the experimental results.

Performance Measurement of the Wireless Charging Devices Using Eletromagnetic Induction Techniques (전자기유도방식을 이용한 무선 충전 기기의 구현 및 성능 측정)

  • Ryu, Daun;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.237-243
    • /
    • 2015
  • This paper presented the design of wireless power transfer (WPT) system using electromagnetic induction techniques and analysed WPT efficiency. Also, we presented the optimum coil condition by measuring the efficiency variation according to some receiving coil parameter changes. Voltage change is measured by receiving coil position for the designed transmitting and receiving circuit. Voltage change according to inductance variation at the same position and charging time are compared at the same environment by using a developed application program to realize an optimum WPT system. Developed wireless power transfer system using electromagnetic induction techniques uses 125 kHz. It takes 16 minutes by using wired charger, and 23 minutes by using wireless charger for charging from 50% to 60% charging status.

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

Improved Degree of Freedom of Magnetic Induction Wireless Charging Coil Using Proposed Double Coil (이중코일을 이용한 자기유도 무선충전 코일의 자유도 개선)

  • Choi, Bo-Hee;Nam, Yong-Hyun;Chung, Habong;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.907-914
    • /
    • 2018
  • Wireless charging has been actively researched and popularized owing to the potential convenience of being able to charge electronic devices without wires for users. However, the receiver on the wireless charging pad is not charged when the center of the receiver is misaligned; thus, the center of the receiver must be adjusted well. This misalignment may greatly reduce the convenience of wireless charging. To overcome this limitation of wireless charging, a coil is designed to improve the positional freedom of the receiver. The positional freedom of the Rx coil is improved when the outer diameter of Tx coil is larger than when Rx and Tx coils are almost the same size. When the Tx coil has a larger outer diameter than that of the Rx coil, the efficiency at the center is somewhat lowered, but the efficiency is improved compared to when the center is out of order. In this paper, a double coil structure having an outer and an inner coil is proposed. The double coil structure further improves the efficiency, compared with one coil with the same outer size. The simulation and measurement results demonstrated that the tendency was consistent, and it was verified that the degree of freedom of the Rx coil is improved by adding the inner coil, while the size of the outer coil was the same. The measurement shows that the transmission efficiency of the conventional Tx coil is 37 %, the larger outer diameter coil is 45 %, and double coil is 47 % when the distance of the Tx/Rx coil is 3 mm, the misalignment is 15 mm and current flowing in the Rx coil is 1 A at an operating frequency of 105 to 210 kHz.

Fabrication and Test of Persistent Current Switch for HTS Magnet System

  • Hyoungku Kang;Kim, Jung-Ho;Jinho Joo;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.92-96
    • /
    • 2003
  • This paper deals with the characteristics of persistent current switch (rCS) system fer applied HTS magnet system. To apply the high-Tc superconductor in superconducting machine such as motror, generator, MAGLEV, MRI, and NMR, the study on high-Tc superconducting persistent current mode must be performed. In this experiment, the PCS system consists otd superconducting magnet, PCS and magnet power supply. The superconducting magnet was fabricated by connecting four double pancake coils (DPCs) in series. The PCS was inductive double pancake coil type and heated up by the SUS 303L tape heater. The optimal length of PCS was calculated and thermal quench state of PCS was simulated by using finite element method(FEM) and compared with experimental results. The optimal energy to normalize the PCS was calculated and introduced. Finally, the persistent current was observed with respect to various ramping up rate and magnitude of charging current.

Development of Carbon Nanomaterials-based High-Energy-Density Hybrid Capacitors for a Mini-Tram Vehicle (미니트램 차량을 위한 탄소 나노소재 기반 하이브리드 커패시터 개발)

  • Kang, Seok-Won;Han, Su-Hyun;Jeong, Rag-Gyo;Park, Ji-Hyun;Jun, Seong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1038-1039
    • /
    • 2015
  • 미니트램(Mini-Tram)의 에너지 공급시스템은 유도급전(IPT: Inductive Power Transfer) 기반의 무선급속충전(Wireless High Speed Charging) 및 슈퍼커패시터(Supercapacitor) 기술을 융합하여 구성되었다. 기존의 전기이중층 커패시터(EDLC) 및 하이브리드 커패시터(LIC)는 급속충전을 위한 출력성능은 충족하지만, 낮은 에너지밀도 때문에 미니트램의 활용성을 제한하고 있다. 이에 수송시스템 분야에서의 커패시터의 경쟁력을 향상하기 위해서는 최소한의 공간 및 무게 조건을 충족함과 동시에 에너지 밀도를 극대화할 수 있는 하이브리드 커패시터의 개발이 요구된다. 본 논문에서는 개발 중인 미니트램의 에너지 요구량을 산정하여 매체의 개발목표 사양을 도출하고 이를 실현하기 위한 방안에 대해서 논하고자 한다.

  • PDF

Beam Efficiency of Wireless Power Transmission via Radio Waves from Short Range to Long Range

  • Shinohara, Naoki
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • Wireless power transmission (WPT) is useful technology in near future. There are some kinds of the WPT technologies, WPT via radio waves, resonance coupling, and inductive. Especially the WPT via radio waves is used for multi-purposes from short range to long range application. However, unfortunately it is misunderstood that it is low efficiency and low power. In this paper, I show the theory of beam efficiency between transmitting antennas and receiving antennas and also show some high efficient applications of the WPT via radio waves. Especially, I pick up a wireless power charging system of an electric vehicle and show the experimental results. I show difference between the theory of beam efficiency and the experimental results of short range WPT. I indicate that reasons of poor beam efficiency in the experiment are (1) change of impedance caused by mutual coupling between transmitting antennas and receiving antennas, (2) oblique direction of microwave power to receiving antennas caused by short distance.

Marx Generator Implementation Using IGBT Stack (IGBT 스택을 이용한 Marx Generator 구현)

  • Kim, J.H.;Min, B.D.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.507-510
    • /
    • 2005
  • High voltage pulse power supply using Marx generator and solid-state switches is proposed in this study. The Marx generator is composed of 12 stages and each stage is made of IGBT stack, two diode stacks, and capacitor. To charge the capacitors of each stage in parallel, inductive charging method is used and this method results in high efficiency and high repetition rates. It can generate the pulse voltage with the following parameters: Voltage: up to 120kv Rising time: sub ${\mu}S$ Pulse width: up to $10{\mu}S$, Pulse repetition rate: 1000pps The proposed pulsed power generator uses IGBT stack with a simple driver and has modular design. So this system structure gives compactness and easiness to implement total system. Some experimental results are included to verify the system performances in this paper.

  • PDF

6.78MHz Capacitive Coupling Wireless Power Transfer System

  • Yi, Kang Hyun
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.987-993
    • /
    • 2015
  • Wireless power transfer technologies typically include inductive coupling, magnetic resonance, and capacitive coupling methods. Among these methods, capacitive coupling wireless power transfer (CCWPT) has been studied to overcome the drawbacks of other approaches. CCWPT has many advantages such as having a simple structure, low standing power loss, reduced electromagnetic interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system consists of a 6.78MHz class D inverter with a LC low pass filter, capacitor between a transmitter and a receiver, and impedance transformers. The system is verified with a prototype for charging mobile devices.

Design of the 1.5kVA Class Wireless Power Transfer Device for Battery Charging of Integrated Power Control System in MSAP (군 이동기지국시스템(MSAP) 통합전원제어장치 배터리 충전용 1.5kVA급 무선전력전송기기의 설계)

  • Kim, Jin-Sung;Kim, Byung-Jun;Park, Hyeon-Jeong;Seo, Min-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • The Tactical Information and Communication Network system provides real-time multimedia services such as voice and data by utilizing the Mobile Subscriber Access Point. At this time, an external transmission path is constructed through the Low Capacity Trunk Radio and the High Capacity Trunk Radio system. The communication devices of each wireless transmission system are mounted on a tactical vehicle and a secondary battery is used to prevent a power interruption when the supply power to the tactical vehicle is transferred to the integrated power control device. In this paper, the basic design of the Wireless Power Transfer device for charging the battery of the integrated power control system of the mobile base station system using the Loading Distribution Method and checking the number of primary windings and the core material selection by the air gap through the Finite Elements Method.