• Title/Summary/Keyword: Induction pump

Search Result 103, Processing Time 0.032 seconds

The Analysis of Flow Characteristics of Conductive Liquid Metal Using TLIM Electromagnetic Pump (TLIM 전자펌프를 이용한 전도성 용융금속의 유동특성 해석)

  • Kim, Chang-Eob;Jeon, Mun-Ho;Kwon, Jeong-Tae;Lim, Hyo-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.130-141
    • /
    • 2008
  • This paper presents the flow characteristics in the fluid circulation loop using the tubular type linear induction motor(TLIM) electromagnetic pump. A TLIM of thrust 40[N] is analyzed using the equivalent and genetic algorithm for the system The flow characteristics are analyzed by coupling the Maxwell equations with the Navier-Stokes equation with the thrust. The analysis algorithm is developed for analyzing the liquid metal flow in the system for laminar and turbulent flow. And the effect of thrust is analyzed for the flow characteristics.

The Effect of Coil Shape on the Electromagnetic Force in the Cylindrical Electromagnetic Pump Using Linear Traveling Traveling Magnetic Field (선형 이동 자기장을 사용한 원통형 전자기 펌프의 전자기력에 미치는 코일 모양의 영향)

  • 이경우;정순효;오영주;조영환;심재동
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.892-899
    • /
    • 1995
  • A numerical simulation program based on the finite elerrent method is developed for calculating electromagnetic field of the cylindrical electromagnetic pump. The calculated results by the developed program show that Lorentz forces show maximum peak at an optimum length ($L_c$) of the induction coil. The value of $L_c$ depends on the radius of the molten metal when the skin depth is large. On the other hand, the value of $L_c$ depends on the skin depth when it is small.

  • PDF

An Application of CDM Project for Greenhouse Gas Reduction Activities in the Wastewater Treatment Systems (하수처리시스템 온실가스 저감활동에 대한 CDM 사업 적용에 관한 연구)

  • Kwak, In-Ho;Hwang, Young-Woo;Jo, Hyun-Jung;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.319-332
    • /
    • 2010
  • In general, wastewater treatment systems consume high-energy consumption depending on operation characteristics of the facilities. Therefore, greenhouse gas(GHG) reduction activities that are application of digestion gas, induction of renewable energy etc. are conducted to reduce energy consumption and to increase energy independence ratio. In this study, GHG reduction in wastewater treatment system identified, searched application of Clean Development mechanism(CDM) approved methodology. If the methodologies apply to GHG reduction activities such as application of digestion gas, heat pump system using the wastewater as heat source, hydropower using the methodology determined CDM applicability, otherwise through several assumptions calculated expectable GHG reduction emissions and determined CDM applicability. As a result, the order of calculated GHG reduction emission showed that collected and energy generation of digestion gas is 66,775 $tCO_2$/yr, gas engine cogeneration system is 8,182 $tCO_2$/yr, heat pump system using the wastewater as a heat source is 72,715 $tCO_2$/yr, and hydropower is 561 $tCO_2$/yr. Consequently, the order of calculated Certified Emission Reductions(CERs) benefit showed that heat pump system using the wastewater, as a heat source is 1,381 million won/yr was estimated as the highest, followed by a collected and energy generation of digestion gas is 1,268 million won/yr.

Vector Control of Single Phase Induction Motor using PV System (PV 시스템을 이용만 단상유도전동기의 벡터제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-58
    • /
    • 2009
  • This paper presents the vector control of single phase induction motor(SPIM) to operate water pumping system using PV system with a maximum power point tracking(MPPT). The water pumping system uses a variable speed SPIM driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

Voctor Control of Single Phase Induction Motor using PV system (PV 시스템을 이용한 단상유도전동기의 벡터제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.195-197
    • /
    • 2007
  • The water pumping system uses a variable speed single phase induction motor driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage$(V_{dq})$, current$(I_{dq})$, speed of motor and torque.

  • PDF

An Approach for Identifying the Temperature of Inductance Motors by Estimating the Rotor Slot Harmonic Based on Model Predictive Control

  • Wang, Liguo;Jiang, Qingyue;Zhang, Chaoyu;Jin, Dongxin;Deng, Hui
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.695-703
    • /
    • 2017
  • In order to satisfy the urgent requirements for the overheating protection of induction motors, an approach that can be used to identify motor temperature has been proposed based on the rotor slots harmonic (RSH) in this paper. One method to accomplish this is to improve the calculation efficiency of the RSH by predicting the stator winding distribution harmonic order by analyzing the harmonics spectrum. Another approach is to increase the identification accuracy of the RSH by suppressing the influence of voltage flashes or current surges during temperature estimation based on model predictive control (MPC). First, an analytical expression of the stator inductance is extracted from a steady-state positive sequence motor equivalent circuit model developed from the rotor flux field orientation. Then a procedure that applies MPC for reducing the identification error of the rotor temperature caused by voltage sag or swell of the power system is given. Due to this work, the efficiency and accuracy of the RSH have been significantly improved and validated our experiments. This work can serves as a reference for the on-line temperature monitoring and overheating protection of an induction motor.

Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response (빠른 응답성을 갖는 가변속 DFIM 분석)

  • Sun, Jinlei;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

Starting Performance Analysis for Large Induction Motor Pump System Under the Circumstance of Long Distance Distribution Line (장거리 배전선로에서 펌프구동용 대용량 전동기의 기동특성 분석 연구)

  • Lee, Nam-Hyung;Lee, Kwang-Ho;Kim, Hyun-Il;Jang, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.311-312
    • /
    • 2008
  • 장거리 배전선로를 이용하여 대용량의 모터펌프를 기동할 경우 상대적으로 큰 임피던스 전압강하에 따른 모터의 기동불능 및 기동지연 등의 현상이 발생할 가능성이 있다. 본 논문에서는 K-water D 취수장에서 운영중인 2200kW 모터 기동시 발생하는 이상 현상에 대한 원인을 분석하고 이에 대한 해결책을 제시하였다. 특히 장거리 배전선로 환경하에서의 모터 기동시 문제점에 대한 해결책을 제시하기 위해 PTW를 이용하여 시뮬레이션하였다.

  • PDF

A Study on a Flux Switching Motor Drive for Fan Application

  • Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.49-56
    • /
    • 2009
  • A new class of electronically commutated brushless motors, the flux-switching motor (FSM), is gradually emerging for use in power tools and household appliances especially fan and pump application thanks to green policies, This motor offers such advantages as high-power density and relatively high efficiency compare to induction motors, and low cost and simple motor structure compare to the BLDC motor. This paper presents the principle of the FSM and design of the 12/6 pole FSM drive system for fan application. Test results of the prototype motor are provided to verify the validity of the fan application with a TMS320F2812 DSP and inverter.

Instantaneous Flux Weakening Control for High Speed Induction Machine (유도 전동기 고속 운정을 위한 순시적 약자속 제어)

  • Moon, Jooyoung;Lee, Hak-Jun;Yoo, Anno;Hong, Chanook;Lee, Jeongjoon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.207-208
    • /
    • 2015
  • 팬(fan), 펌프(pump), 블로어(blower), 전기 자동차(electric/hybrid vehicle), 전동차와 같은 다양한 분야에서 3상 전동기의 고속 운전에 대한 요구가 증대되고 있다. 일반적으로 3상 전동기가 정격 속도 이상의 고속에서 운전하기 위해서는 회전자 자속(rotor flux)의 크기를 운전 상황에 따라 감소시키는 약자속(flux weakening) 제어가 필수적이다. 유도 전동기의 회전자 자속 기준 벡터 제어 시의 약자속 운전은 자속 성분 전류의 크기를 제어하여 유도 전동기의 고속 운전을 가능하게 하는데, 이러한 전류 제어 기반의 약자속 제어는 그 구조가 복잡하고, 제어기 이득 선정에 따른 동특성(dynamic)이 영향울 받는 문제점을 가지고 있다. 본 논문에서는 이러한 단점을 개선하기 위한 순시적 약자속 제어 방법을 제안하고 3.7kW 유도 전동기를 이용한 실험을 통하여 제안된 방식의 성능을 검증한다.

  • PDF