• Title/Summary/Keyword: Induction cold crucible melter

Search Result 14, Processing Time 0.022 seconds

Studies on the Physico-chemical Properties of Mixed Radioactive Waste Glass

  • Kim, C.W.;Choi, J.R.;Ji, P.K.;Park, J.K.;Shin, S.W.;Ha, J.H.;Song, M.J.;Hwang, T.W.;Park, S.J.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2004
  • In order to vitrify the W1 waste (ion-exchange resin(IER), zeolite, and dry active waste(DAW)) generated from Korean Nuclear Power Plants, a glass formulation development based on waste compositions and production rates was performed. A aluminoborosilicate glass, AG8W1, was formulated to vitrify the W1 waste in an induction cold crucible melter(CCM). The processability, product performance, and economics of the candidate glass were calculated using a computer code and were measured experimentally in the laboratory and CCM. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. Start-up and maintaining glass melt of the candidate glass were favorable in the CCM. The product quality of the glass such as chemical durability, phase stability, etc. was satisfactory. The vitrification process using the candidate glass was also evaluated to be operated as economically as possible.

Characteristics of Vitrification Process and Vitrified Form for Radioactive Waste (방사성폐기물 유리화 공정 및 유리고화체 특성)

  • Kim, Cheon-Woo;Kim, Ji-Yean;ChoI, Jong-Rak;Ji, Pyung-Kook;Park, Jong-Kil;Shin, Sang-Woon;Ha, Jong-Hyun;Song, Myung-Jae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.175-180
    • /
    • 2004
  • In order to vitrify the combustible dry active waste (DAW) generated from Korean Nuclear Power Plants, a glass formulation development based on waste composition was performed. A borosilicate glass, DG-2, was formulated to vitrify the DAW in an induction cold crucible melter (CCM). The processability, product performance, and volume reduction effect of the candidate glass were evaluated using a computer code and were measured experimentally in the laboratory and CCM. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. Start-up and maintaining glass melt of the candidate glass were favorable in the CCM. The product of the glass product such as chemical durability, phase stability, and density was satisfactory. The vitrification process using the candidate glass was also evaluated assuming that it was operated as economically as possible.

  • PDF

Development on Glass Formulation for Aluminum Metal and Glass Fiber (유리섬유 및 알루미늄 금속 혼합물 유리조성 개발)

  • Cho, Hyun-Je;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • Vitrification technology has been widely applied as one of effective processing methods for wastes generated in nuclear power plants. The advantage of vitrifying for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. Recently, a filter using on HVAC(Heating Ventilating & Air Conditioning System) is composed with media (glass fiber) and separator (aluminum film) has been studied the proper treatment technology for meeting the waste disposal requirement. Present paper is a feasibility study for the filter vitrification that developing of the glass compositions for filter melting and melting test for physicochemical characteristic evaluation. The aluminum metal of film type is preparing with 0.5 cm size for proper mixing with glass frit, glass fiber is also preparing with 1 cm size within crucible. The glass compositions should be developed considering molten glass are related with wastes reduction. Glass compositions obtained from developing on glass formulation are mainly composed of $SiO_2$ and $B_2O_3$ for aluminum metal. A variety of factors obtained from the glass formulation and melting test are reviewed, which is feeding rate and glass characteristics of final products such as durability for implementing the wastes disposal requirement.

Feasibility Study on Vitrification for Rare Earth Wastes of PyroGreen Process (파이로그린공정 희토류폐기물 유리화 타당성 연구)

  • Kim, Cheon-Woo;Lee, Byeong Gwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The rare earth oxide wastes consisting of major 8 nuclides Y, La, Ce, Pr, Nd, Sm, Eu and Gd, are generated during the salt waste treatment of PyroGreen process. The final form of the rare earth is generated as the oxide state. In this study, six candidate glasses were developed to evaluate the feasibility for vitrifying the rare earth oxide wastes within the borosilicate glass system. The solubilities of the mixture of the rare earth oxide waste showed less than 25wt% at $1,200^{\circ}C$, less than 30wt% at $1,300^{\circ}C$, respectively. It means that solubility is increased with the temperature increment. The liquidus temperature of the homogeneous glass with 20wt% waste loading was determined as less than $950^{\circ}C$. In more than solubility of rare earth oxides glass, formation of rare earth-oxide-silicate crystal in glass-ceramic occurred as the secondary phase. As their viscosity at melting temperature $1,200{\sim}1,300^{\circ}C$ was less than 100 poise, electrical conductivity was higher than 1 S/cm, 20~25wt% waste loading glasses with good surface homogeneity are judged to have good operability in cold crucible induction melter. Other physicochemical properties of the developed glasses are going to be experimented in the future.