• 제목/요약/키워드: Induction Servomotor Drive System

검색결과 5건 처리시간 0.021초

유도기 서보모터 시스템의 적응 고차 신경망 제어 (Adaptive High-Order Neural Network Control of Induction Servomotor System)

  • 김도우;정기철;이승학
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권11호
    • /
    • pp.650-653
    • /
    • 2005
  • In this paper, adaptive high-order neural network controller(AHONNC) is adopted to control an induction servomotor. A algorithm is developed by combining compensation control and high-order neural networks. Moreover, an adaptive bound estimation algorithm was proposed to estimate the bound of approximation error. The weight of the high-order neural network can be online tuned in the sense of the Lyapunov stability theorem; thus, the stability of the closed-loop system can be guaranteed. Simulation results for induction servomotor drive system are shown to confirm the validity of the proposed controller.

인덕션 서보 모터 드라이브 시스템의 적응 고차 신경망 제어 (Adaptive High-Order Neural Network Control of Induction Servomotor Drive System)

  • 정진혁;박성민;황영호;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.903-905
    • /
    • 2003
  • In this paper, adaptive high-order neural network controller(AHONNC) is adopted to control of an induction servomotor. A algorithm is developed by combining compensation control and high-order neural networks. Moreover, an adaptive bound estimation algorithm was proposed to estimate the bound of approximation error. The weight of the high-order neural network can be online tuned in the sense of the Lyapunov stability theorem; thus, the stability of the closed-loop system can be guaranteed. Simulation results for induction servomotor drive system are shown to confirm the validity of the proposed controller.

  • PDF

유도형 교류 서보전동기의 고응답 구동회로 설계에 관한 연구 (Design of High-Response Speed Control System for AC Servomotor Drive)

  • 성영권;조철제
    • 대한전기학회논문지
    • /
    • 제41권5호
    • /
    • pp.474-482
    • /
    • 1992
  • This paper describes the speed control system of an induction type ac servomotor drive on the vector control basis of slip frequency and constant secondary flux control for a quick torque response. The system is composed of a digital controller using a SCB-V50 microprocessor and a PWM inverter with power MOSFETs for high speed switching. And, for the measurement of actual instantaneous currents, MDCS A070-051 hall sensors are employed. The rising time of step responce by this system through the test of a 600[W] ac servomotor is 30[ms]. Overall experimental result shows that the drive performance of the system is similar to that of a separately excited armature current control of a dc motior.

  • PDF

퍼지 뉴럴 네트워크를 이용한 서보모터 드라이브의 강인 적응 위치 제어 (Robust Adaptive Position Control for Servomotor Drive Using Fuzzy-neural Networks)

  • 황영호;이안용;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1834-1835
    • /
    • 2006
  • A robust adaptive position control algorithm is proposed for servomotor drive system with uncertainties and load disturbance. The proposed controller is comprised of a nominal controller and a robust control. The nominal controller is designed in the condition without all the external load disturbance, nonlinear friction and unpredicted uncertainties. The robust controller containing lumped uncertainty approximator using fuzzy-neural network(FNN) is designed to dispel the effect of uncertainties and load disturbance. The interconnection weight of the FNN can be online tuned in the sense of the Lyapunov stability theorem thus asymptotic stability of the proposed control system can be guaranteed. Finally, simulation results verify that the proposed control algorithm can achieve favorable tracking performance for the induction servomotor drive system.

  • PDF

벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구 (The Speed Control System of an Induction Type A.C Servomotor by Vector Control)

  • 홍순일;조철제
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.1041-1047
    • /
    • 1989
  • In recent years, a.c servomotors have been gradually replacing d.c servomotors in various high-performance applications such as machine tools and industrial robots. Inparticular, the high performance slip-frequency control of an induction motor, which is often called the vector control, is considered ane of th ebest a.c drives. In this paper, the transient state equations and vector control algorithms of an induction type servomotor are described mathematically by using the two- axis theory (d-q coordinates). According to the result of these algorithms, we scheme the speed control system for the motor in which the vector control is adopted to give high performance. Motor drive through a PWM inverter with power MOSFET is controlled so that the actual input current to the motor may track the current reference obtained from a micro-computer (8086 CPU). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is obtained for this system.