• Title/Summary/Keyword: Induction Motor Drives

Search Result 313, Processing Time 0.027 seconds

Experimental Realization of Matrix Converter Based Induction Motor Drive under Various Abnormal Voltage Conditions

  • Kumar, Vinod;Bansal, Ramesh Chand;Joshi, Raghuveer Raj
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • While the matrix converter has many advantages that include bi-directional power flow, a size reduction, a long lifetime, and sinusoidal input currents, it is vulnerable to the input voltage disturbances, because it directly exchanges the input voltage to the output voltage. So, in this paper, a critical evaluation of the effect of various abnormal voltage conditions like unbalanced power supply, balanced non-sinusoidal power supply, input voltage sags and short time blackout of power supply on matrix converter fed induction motor drives is presented. The operation under various abnormal conditions has been analyzed. For this, a 230V, 250VA three phase to three phase matrix converter (MC) fed induction motor drive prototype is implemented using DSP based controller and tests have been carried out to evaluate and improve the stability of system under typical abnormal conditions. Digital storage oscilloscope & power quality analyzer are used for experimental observations.

Maximum Efficiency Control of Induction Motor Drives Using Quadratic Interpolation Method (2차 보간법을 사용한 유도전동기 최대효율제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.62-66
    • /
    • 2009
  • Three inputs of given three magnetic fluxes of an induction motor are calculated. Then, the calculation of magnetic flux for minimum input is repeated using quadratic interpolation method until the convergence criteria are satisfied. The maximum efficiency control is fulfilled with the final magnetic flux for minimum input. Simulation results verify the effectiveness of the proposed method.

Speed Estimation of Induction Motor Using Binary Observer (이원관측기를 이용한 유도전동기의 속도추정)

  • 김상욱;나재두;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.171-176
    • /
    • 1997
  • This paper presents a design method of the continuous inertial binary observer which includes the rotor flux and speed estimations. The sliding observer based on the variable structure theory ensures the robustness of disturbance and is applied for the method to keep an insensitivity for the variations of parameter. Sliding observer, however, has a high-frequency chattering deteriorating the state estimation performance. To reduce the chattering on the sliding surface in sliding observer and improve the estimation performance, binary observer scheme which has main advantages such as the absence of high-frequency chattering and the finite gains is applied in this paper. Computer simulation results show the effectiveness of binary observer proposed here for the induction motor drives.

  • PDF

A Study on the Speed Estimation Methods of Induction Motor Drives in the Field Weakening Region (약계자영역에서 유도전동기 구동을 위한 속도 추정 기법에 관한 연구)

  • Kim S. K.;Shin M. H.;Hyun D. S.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.269-273
    • /
    • 2004
  • It is important to estimate the rotor speed for field weakening operation in the speed sensorless stator flux oriented (SFO) induction motor drive. Several methods have been reported to estimate exactly the speed in the speed sensorless system. In this paper, we apply two observer-based methods, the Luenberger observer (LO) and the Kalman filter (KF), to SFO induction motor drive in order to achieve a speed sensorless operation in field weakening region. Two control methods are reviewed and discussed. The operation characteristics of these methods in the field weakening region is compared by simulation and experiment.

  • PDF

Matlab/Simulink based Realtime Simulation of Induction Motor Drives (Matlab/Simulink기반 유도전동기 벡터제어 시스템의 실시간 시뮬레이션)

  • Lee HakJu;Kwon SeongChul;Yang SeungKwon;Oh SungUp;Seong SeJin
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.19-22
    • /
    • 2004
  • In this paper, we present a way that can implement the vector control Algorithm of induction motor and PWM signal generation on the basis of Matlab Simulink environment. The overall system model is designed by Simulink toolbox for vector control of induction motor, and then implement experiment with the DS1103 board of dSPACE. Although we are not coding the system, it is capable of doing simulation and experiment simultaneously. That is why Matlab and dSPACE board compiler can generate the '*.c' and '*.obj' files on the designed system automatically. After considering about hardware structure and driving system in Ds1103 board we verify the availability of Proposed method through in a comparison/analysis between simulation and experiment.

  • PDF

Cycloconverters with Resonant Circuits for Induction Motor Drives (기진회로를 이용한 사이크로콘버터에 의한 유도전동식 구동)

  • 김영석;조규민
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.125-134
    • /
    • 1992
  • This paper presents a cycloconverter with an LC resonant circuit for an induction motor drive. The cycloconverter can keep input displacement factor at 1.0 by independently controlling real and reactive power under any load conditions. Furthermore it can keep power factor at about 1.0 since input and output current waveforms are nearly sinusoidal. Since it uses high frequency resonant circuit for commutation source, it can produce an output voltage of hundreds of hertz. Since it is also possible to make a system of high capacity using the cycloconverter, it is appropriate to drive motors with high speed and high capacity as well as general purpose motors, In this paper, we describe the operating principles of the cycloconverter and power control algorithms, and analyze its waveforms and present its characteristics. Expermental results are shown for the volts/hertz control of the induction motor and the validity of the proposed model is verified.

Single-Pass Induction Motor Parameter Identification Method Taking Into Account Saturation and Rotor Parameter Variations

  • McKinnon, Douglas J.;Grantham, Colin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.3-9
    • /
    • 2012
  • The paper describes a novel technique for on line parameter identification of three-phase induction motors from a single, run up to speed test. Data is sampled during this test with the normal locked rotor and synchronous speed data captured on the way to reaching the motor's rated speed. Rotor parameter variations with frequency due to skin and proximity effects and other non-linear imperfections such as heating and main flux path saturation are taken into account. This method is ideal for determining and/or verifying parameters used in high performance drives.

Digital Control System for Induction Motor Drive Using F240DSP (F240DSP 이용한 유도전동기 디지털 제어시스템)

  • 김남훈;김동희;이상호;이상석;김민회
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.377-381
    • /
    • 1999
  • This paper presents a implementation of digital motion control system for induction motor vector drives using the 16bit DSP TMS320F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controllers for induction motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are speed and current sensing, sine look-up table and generated SVPWM by fully integrated control software. The developed system in a implementation are shown a good speed response characteristic results and high performance features. The system can be adapted variform motor drive system.

  • PDF

Speed Control System of Induction Motor with Fuzzy-Sliding Mode Controller for Traction Applications

  • Kim, Duk-Heon;Ryoo, Hong-Je;Rim, Geun-Hie;Kim, Yong-Ju;Won, Chung-Yuen
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.52-58
    • /
    • 2003
  • The application of a sliding mode control for improving the dynamic response of an induction motor based speed control system is presented in this paper and provides attractive features, such as fast response, good transient performance, and insensitivity to variations in plant parameters and external disturbance. However, chattering is a difficult problem for which the sliding mode control is a popular solution. This paper presents a new fuzzy-sliding mode controller for a sensorless vector-controlled induction motor servo system to practically eliminate the chattering problem for traction applications. A DSP based implementation of the speed control system is employed. Experimental results are presented using a propulsion system simulator. The performance of the drive is shown to be practically free from chattering.

End-Effect Compensation in Linear Induction Motor Drives

  • Satvati, Mohammad Reza;Vaez-Zade, Sadegh
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.697-703
    • /
    • 2011
  • In this paper a control system with a high performance dynamic response for linear induction motors (LIMs) is proposed which takes into account the end-effect in both the machine model and the control system. Primary flux oriented control has two major drawbacks i.e. a lack of decoupling of the thrust and the flux and a possibility of system instability due to the end-effect. Both of these drawbacks have been dealt with in this paper. A flux estimation method is proposed to correct the flux orientation error caused by the end effect. Extensive motor performance evaluations under the proposed control system prove its superiority over conventional vector control.