• Title/Summary/Keyword: Inductance estimation

Search Result 125, Processing Time 0.027 seconds

Inductance Calculation in a Switched Reluctance Motor using Permeance Method (퍼미언스 방법을 이용한 스위치드 릴럭턴스 전동기의 인덕턴스 산정)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1836-1842
    • /
    • 2012
  • Torque is proportional to the rate of change of inductance in a switched reluctance motor (SRM), and hence, phase inductance is an important parameter in determining the behavior of an SRM. Therefore, the accurate prediction of inductance with respect to rotor position makes a significant contribution to designing an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance is predicted by means of a permeance method, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance obtained by FEA.

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

A Position Sensorless Control of Switched Reluctance Motors Based on Phase Inductance Slope

  • Cai, Jun;Deng, Zhiquan
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.264-274
    • /
    • 2013
  • A new sensorless position estimation method for switched reluctance motor (SRM) drives is presented in this paper. This method uses the change of the slope of the phase inductance to detect the aligned position. Since the aligned positions for successive electrical cycle of each phase are apart by a fixed mechanical angle $45^{\circ}$ in the case of 12/8 SRM, the speed of the machine can be calculated to estimate the rotor position. Since no prior knowledge of motor parameters is required, the method is easy for implementation without adding any additional hardware or memory. In order to verify the validity of this technique, effects such as changes in the advanced angle and phase lacking faults are examined. In addition, an inductance threshold based sensorless starting scheme is also proposed. Experimental results demonstrate the validity of the proposed method.

A Compensation Method for Mutual Inductance Variation of the Induction Motor by Using Improved Speed Estimator (개선된 속도 추정기에 의한 유도전동기 자화 인덕턴스 변동 보상법)

  • 최정수;김영석;김상욱
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.505-508
    • /
    • 1999
  • Conventional adaptive speed estimators cannot avoid the influence of the non-linear inductance variation under the saturation conditions. Without speed sensors, it is difficult to identify the inductance variation using a reactive power mode because the model contains a term of the rotor speed. In this paper, we propose a novel speed estimator having hybrid architecture in order to estimate both the rotor speed and the inductance variation simultaneously when the motor flux is saturated. Proposed estimator consists of the error between the flux obtained from the stator voltage equation and the flux estimated from the rotor flux observer. Introducing a new correction term into the estimator increases the estimation ability of the conventional speed estimator even though the motor flux is saturated. The convergence of the speed estimation error is examined by simulation Furthermore, the experimental results show the validity of the proposed method.

  • PDF

A Novel Estimation Method of Grid Inductance for the Commutation Compensation Control of the Phase Controlled Rectifier (위상제어 정류기의 전류구간(Commutation) 보상 제어를 위한 새로운 계통 인덕턴스의 추정 방법)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.324-329
    • /
    • 2017
  • The phase controlled rectifier using thyristor is suitable for the high capacity and low-cost system. However, the rectifier output voltage drop is influenced by the grid inductance effect. Supposing the commutation area voltage and current are analyzed, the grid inductance can be estimated using the proposed algorithm. This paper presents the grid inductance estimation method for improved commutation compensation control of the phase controlled rectifier, and the proposed control algorithm effectiveness is verified by simulation.

Inductance Reasoning Method for Sensorless Control of an SRM (SRM의 센서리스 제어를 위한 인덕턴스 추론기법)

  • 안진우;박성준;김태형
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.427-434
    • /
    • 2003
  • This paper describes a new method of detecting rotor position in switched reluctance motor(SRM), Some strategies of position sensorless control methods for the motor include the measurement of phase current and applied pulse voltage in an unexcited phase. The principle of the estimation of a rotor position is based on the detection of inductance by pulse currents. This sensorless method is very simple to compute rotor position estimation and gives efficient control of drive system. Suggested method is verified by some experimental tests.

A Study of a SR Motor drive with induction estimation (인덕턴스 연산에 의한 스위치드 릴럭턴스 전동기의 회전자 위치검출)

  • Na, Jong-Duk;Chung, Byun-Ho;Lim, Yang-Soo;Kim, Pyung-Ho;Cho, Guem-Bae;Baek, Hyung-Lae
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.417-420
    • /
    • 2005
  • In this paper proposes a very simple method to estimate the rotor position of a switched reluctance motor. By on-line estimating the self-inductance of the motor, the rotor position of the SR motor is obtained, and a closed-loop drive system can be achieved. Proposed methods can easy implement to application with sensorless SR motor drive system. Speed 2000rpm SR motor simulation executed with self inductance estimation and result represented. Simulation result verified the rotor position using the proposed self-inductance estimation method.

  • PDF

Estimation of Mutual Inductance Angle for 2-D Wireless Power Transfer System (2차원 무선전력전송 시스템의 상호 인덕턴스 각 추정)

  • Guo, Tianqi;Seol, Won-Kyu;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.49-50
    • /
    • 2017
  • In a two-dimensional wireless power transfer system, the mutual inductance angle is the most important parameter for determining the power transmission efficiency. This paper presents a technique to estimate the mutual inductance angle from the voltage and current information of the transmitting (Tx) coils. The equation to estimate the mutual inductance angle is derived, and the validity of the proposed method is verified through simulation and experiment.

  • PDF

New On-line Tuning Scheme of Inductances for Induction Motors in Field Weakening Region (약계자 영역에서 유동전동기 인덕턴스의 새로운 온라인 동조방법)

  • 김하용;신명호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1999
  • New estimation and tuning schemes of inductance variations for rotor flux oriented (RFO) control of induction motor in field weakening region are presented. Stator transient inductance and stator self inductance are estimated. From estimated stator self inductance. magnetizing inductance is estimated and from estimated stator transient inductance, rotor leakage inductance is estimated. Simulation and experimental results prove the effectiveness of the proposed s scheme in constant torque and field weakening region.

  • PDF

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.