• 제목/요약/키워드: Induced demand

Search Result 257, Processing Time 0.027 seconds

Strength and stiffness modeling of extended endplate connections with circular and rectangular bolt configurations

  • Hantouche, Elie G.;Mouannes, Elie N.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.323-352
    • /
    • 2016
  • The results of a series of finite element (FE) simulations and experimental studies are used to develop strength and stiffness models that predict the failure capacity and response characteristics of unstiffened extended endplate connections with circular and rectangular bolt configurations associated with deep girders. The proposed stiffness models are composed of multi-linear springs which model the overall extended endplate/column flange system deformation and strength of key-components. Comparison of model predictions with FE and experimental results available in the literature show that the proposed models accurately predict the strength and the response of extended endplate/column system with circular and rectangular bolt configurations. The effect of the bolt configuration (circular and rectangular) on the prying phenomenon encountered in the unstiffened extended endplate/column system was investigated. Based on FE results, extended endplate with circular bolt configuration has a more ductile behavior and exhibits higher total prying forces. The proposed models can be used to design connections that cover all possible failure modes for extended endplate with circular bolt configuration. This study provides guidelines for engineers to account for the additional forces induced in the tension bolts and for the maximum rotational capacity demand in the connection which are required for seismic analysis and design.

Noninvasive Functional Therapy of Mandibular Condylar Fracture (기능적 처치에 의한 하악과두 골절의 치험 3례)

  • Park, Jin-Ho;Kim, Jong-Sup;Im, Nan-Hi;Yun, Hong-Sil;Chin, Byung-Rho;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.11 no.2
    • /
    • pp.398-404
    • /
    • 1994
  • Functional recovery after mandibular condyle fracture was a contradictory result of many authors. The treatment goal of condyle fracture has been directed primarily toward restoration of functional movement of the mandible. We selected some patients who requested functional therapy in many cases of condylar fracture, depend on pattern of fracture, patient's demand, occlusion, age. Without intermaxillary fixation, we induced the patients to rapid healing of temporomandibular function and normal mandibular protrusive, lateral movement as a result of early functional therapy by activator. So, the authors report the cases with review of concerned literature.

  • PDF

The relationship between muscle mitochondrial nutritional overloading and insulin resistance

  • Jeon, Jae-Han;Moon, Jun-Sung;Won, Kyu-Chang;Lee, In-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • The incidence of type 2 diabetes mellitus and insulin resistance is growing rapidly. Multiple organs including the liver, skeletal muscle and adipose tissue control insulin sensitivity coordinately, but the mechanism of skeletal muscle insulin resistance has not yet been fully elucidated. However, there is a growing body of evidence that lipotoxicity induced by mitochondrial dysfunction in skeletal muscle is an important mediator of insulin resistance. However, some recent findings suggest that skeletal mitochondrial dysfunction generated by genetic manipulation is not always correlated with insulin resistance in animal models. A high fat diet can provoke insulin resistance despite a coordinate increase in skeletal muscle mitochondria, which implies that mitochondrial dysfunction is not mandatory in insulin resistance. Furthermore, incomplete fatty acid oxidation by excessive nutrition supply compared to mitochondrial demand can induce insulin resistance without preceding impairment of mitochondrial function. Taken together we suggested that skeletal muscle mitochondrial overloading, not mitochondrial dysfunction, plays a pivotal role in insulin resistance.

Input-output Analysis for Pulp, Paper and Paper Product Industries (펄프, 종이 및 종이제품의 국민경제 기여도 분석)

  • Kim, Chul-Hwan;Moon, Ji-Min;Kim, Eui-Gyeong;Ahn, Byeong-Il
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.45-55
    • /
    • 2010
  • In order to investigate the structures and growth patterns of pulp and paper industries of Korea, the input-output tables of the year 1995, 2000, 2005 and 2007 were analyzed in this papers. The production inducement coefficients of these industries have grown during the designated period. In 2007, the value of production induced by pulp industry was estimated to be 343,8 billion won. Paper and paper product industries were estimated to induce the production of other industries by 7,281,6 and 8,515.9 billion won, respectively. The import inducement effect of pulp industry was estimated to be larger than that of paper and paper product industries. Analysis on the forward linkage effects indicated that paper and paper product industries were more sensitive to the change in demand of other industries than pulp industry.

Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.43-57
    • /
    • 2011
  • Force-deformation modelling of cracked reinforced concrete is essential for a displacement-based seismic assessment of structures and can be achieved by fibre-element analysis of the cross-section of the major lateral resisting elements. The non-linear moment curvature relationship obtained from fibre-element analysis takes into account the significant effects of axial pre-compression and contributions by the longitudinal reinforcement. Whilst some specialised analysis packages possess the capability of incorporating fibre-elements into the modelling (e.g., RESPONSE 2000), implementation of the analysis on EXCEL is illustrated in this paper. The outcome of the analysis is the moment-curvature relationship of the wall cross-section, curvature at yield and at damage control limit states specified by the user. Few software platforms can compete with EXCEL in terms of its transparencies, versatility and familiarity to the computer users. The program has the capability of handling arbitrary cross-sections that are without an axis of symmetry. Application of the program is illustrated with examples of typical cross-sections of structural walls. The calculated limiting curvature for the considered cross-sections were used to construct displacement profiles up the height of the wall for comparison with the seismically induced displacement demand.

Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration

  • Kertesz, Szabolcs
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.73-86
    • /
    • 2014
  • Membrane fouling is a major challenge limiting the use of membrane applications. In this study high induced shear rates were utilized at the membrane surface in order to reduce the organic and inorganic scaling by using the torsional vibration of flat sheet membranes. The performances of a vibratory shear-enhanced processing (VSEP) system for the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membrane filtration of industrial dairy wastewater were investigated. The vibration and non-vibration methods were compared with the same membrane and operational parameters during the purification of real dairy industrial process wastewater. In the initial experiments, short-term tests were carried out in which the effects of vibration amplitude, recirculation flow rate and transmembrane pressure were measured and compared. The permeate flux, turbidity, conductivity and chemical oxygen demand (COD) reduction of dairy wastewater were investigated by using UF, NF and RO membranes with vibration and non-vibration methods. In the subsequent experiments, concentration tests were also carried out. Finally, scanning electron microscopy (SEM) revealed that the vibration method gave a better performance, which can be attributed to the higher membrane shear rate, which reduces the concentration of solids at the membrane, and the transmission.

A Study on the Identification of Electrical Materials by a Fire (화재로 인한 전기재료 감식에 관한 연구)

  • 박남신;홍진웅;조경순
    • Fire Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1992
  • Over the last 100 years since the introduction of electricity, the nation has faced ever increasing demand for electricity as consequence of the rapid economic growth. The expanded consumption ratio for electricity naturally increased the possibility for electricity related accident mainly iii the form of electrically ignited fire and human injuries from electric shock. Under such circumstances, the presented study sets a focus on analysing the causes of the electrically related fire accidents happened in the nation over the last 10 years(in the 80's) to provide a scientific basis for identifying the cause of electric fires. Identification of the cause of fire ignited electrically may be approached either by studying accident related electrical properties or by investigating power instruments at the place of the accient. In the present paper, the former approach is taken especially on investigating the consequences of over current induced by short circuiting of high power instruments which is reported as the primary cause electricity related fire accidents. In order to provide reliability of the identification method, microscopic photograph's are taken for the cross sections of the electrical materials(fuse, wire, plug socket and plug) after being exposed to over current and heated by external means respectively. The results are consequently compared and analysed.

  • PDF

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.

Redesigning Camera's Boss and Gear using by CAE (카메라 보스 및 기어의 CAE를 이용한 재설계)

  • 오상환;김왕도;정종교
    • CDE review
    • /
    • v.4 no.3
    • /
    • pp.26-31
    • /
    • 1998
  • Recent trend of popularity of CAE(Computer Aided Engineering) tools and its availability, partly contributed by significant price reduction of H/W and SW, makes us believe CAE has already established terra firma as de jure tools, enablint the design improvement in the manufacturing am. However, if your jobs are required to be working closely with engineers located in the front line of manufacturing site, CAE is observed far from popularity, still being regarded as exclusive tools for engineers holding advanced degrees. Conventional methodologies depending on knowledge that was accumulated thorough trial and errors, depending primarily on engineering tables and formulas or proprietary know-how, are preferred as the de factor standard under the roof of contemporary development shops. Samsung camera, having stared its business since early 、80, has accumulated enough technological strength to compete in the world market. As today's consumers demand more sophisticated featured-lighter weight, built-in multi zoom and miniature size fitting in the palm-from camera manufacturer, so should Samsung camera respond to ever-delicate consumer's needs with great flexibility. Consequently conventional designers, without sophisticated analytical tools, with encounter solving the critical design factors that have never been treated as seriousness-marginal safety factors induced by reduced size of parts. In the study, CAE results of boss and gears were demonstrated as examples, which confirms the facts that the simple analysis done by front line designers, can bring distinguishable effects on the potential improvements of design and on the consequential influences on the future design process-simulation before actual tooling and productions.

  • PDF

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.