• Title/Summary/Keyword: Induced air

Search Result 1,070, Processing Time 0.024 seconds

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

Comparison of Development Mechanisms of Two Heavy Snowfall Events Occurred in Yeongnam and Yeongdong Regions of the Korean Peninsula (영동과 영남 지역에서 발생한 두 대설의 발달 메커니즘 비교)

  • Park, Ji-Hun;Kim, Kyung-Eak;Heo, Bok-Haeng
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.9-36
    • /
    • 2009
  • Two heavy snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula during the period from 4 to 6 March 2005 are analyzed. The events were developed by two different meso-scale snow clouds associated with an extratropical low passing over the Western Pacific. Based on synoptic data, GOES-9 satellite images, and precipitation amount data, the events were named as Sokcho and Busan cases, respectively. We analyzed the development mechanism of the events using meterological variables from the NCEP(National Centers for Environmental Prediction) /NCAR(National Centers for Atmospheric Research) reanalysis data such as potential vorticity(PV), divergence, tropopause undulation, static stability, and meridional wind circulation. The present analyses show that in the case of Sokcho, the cyclonic circulation in the lower atmosphere in the strong baroclinic region induced the cyclonic circulation in the upper atmosphere. The cyclonic circulation in the lower and upper atmosphere caused a heavy snowfall in the Sokcho region. In the case of Busan, the strong cyclonic circulation in the upper atmosphere was initiated by the stratospheric air intrusion with the high positive PV into the troposphere during the tropopause folding. The upper strong cyclonic circulation enhanced the cyclonic circulation in the lower disturbed atmosphere due to the extratropical low. This lower cyclonic circulation in turn, intensified the upper cyclonic circulation, that caused a heavy snowfall in the Busan region.

A Case Study of Risk Assessment of Ozone Impact on Forest Tree Species in Japan

  • Watanabe, Makoto;Yamaguchi, Masahiro;Matsumura, Hideyuki;Kohno, Yoshihisa;Koike, Takayoshi;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.205-215
    • /
    • 2011
  • Ozone ($O_3$) is a main component of photochemical oxidants and a phytotoxic air pollutant. Although the current levels of tropospheric $O_3$ in East Asia could adversely affect productivity of forest tree species, risk assessments of $O_3$ impact were limited. In this paper, we summarize the methodology of risk assessment of $O_3$ on forest tree species based on our two previous studies, risk assessments of $O_3$ impact on the growth of Fagus crenata by Watanabe et al. (2012) and on the annual carbon absorption of three representative conifers, Cryptomeria japonica, Pinus densiflora and Larix kaempferi by Watanabe et al. (2010). $O_3$ sensitivity of each tree species obtained from an experimental study, $O_3$ exposure and atmospheric N deposition based on field monitoring and vegetation survey were integrated by geographic information system method. Based on the results, we conclude that the area with high risk of $O_3$ impact does not necessarily correspond to the area with high $O_3$ exposure. The varieties of tree habitat, tree sensitivity to $O_3$ and annual carbon absorption among the tree species, and N deposition-induced change in the $O_3$ sensitivity of F. crenata are raised as the factors of discordance between areas with high risk and those with high $O_3$ exposure. In the last part of this paper, we discuss the present uncertainty and perspectives of risk assessment for the future studies on the impact of $O_3$ on forest tree species in East Asia.

Pit Corrosion of SS420 Stainless Steel by Grain Boundary Sensitization (스테인레스강 SS420의 입계예민화에 의한 피트 부식)

  • Choe, Byung Hak;Lee, Bum Gyu;Jang, Hyeon Su;Park, Chan Sung;Kim, Jin Pyo;Park, Nam Gyu;Kim, Cheong In;Kim, Bo Mi
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.431-437
    • /
    • 2017
  • This study investigated the surface pit corrosion of SS420J2 stainless steel accompanied by intergranular crack. To reveal the causes of surface pits and cracks, OM, SEM, and TEM analyses of the microstructures of the utilized SS420J2 were performed, as was simulated heat treatment. The intergranular cracks were found to have been induced by a grain boundary carbide of $(Cr,Fe)_{23}C_6$, which was identified by SEM/EDS and TEM diffraction analyses. The mechanism of grain boundary sensitization occurred at the position of the carbide, followed by its occurrence at the Cr depleted zone. The grain boundary carbide of $(Cr,Fe)_{23}C_6$ type precipitated during air cooling condition after a $1038^{\circ}C$ solid solution treatment. The carbide precipitate formation also accelerated at the band structure formed by cold working. Therefore, using manufacturing processes of cooling and cold working, it is difficult to protect SS420J2 stainless steel against surface pit corrosion. Several counter plans to fight pit corrosion by sensitization were suggested, involving alloying and manufacturing processes.

Electrochemical Properties of LiNiyMn2-yO4 Prepared by the Solid-state Reaction

  • Song, Myoung-Youp;Kwon, Ik-Hyun;Shon, Mi-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.401-404
    • /
    • 2003
  • LiN $i_{y}$M $n_{2-y}$ $O_4$were synthesized by calcining a mixture of LiOH, Mn $O_2$(CMD), and NiO at 40$0^{\circ}C$ for 10 h and then calcining at 85$0^{\circ}C$ for 48 h in air with intermediate grinding. The voltage vs. discharge capacity curves at a current density 300 $\mu$A/c $m^2$ between 3.5 V and 4.3 V showed two plateaus, but the plateaus became ambiguous as the y value increases. The sample with y=0.02 had the largest first discharge capacity, 118.1 mAh/g. As the value y increases from 0.02 up to 0.2, on the whole, the cycling performance became better. The LiN $i_{0.10}$M $n_{1.90}$ $O_4$sample had a relatively large first discharge capacity 95.0 mAh/g and showed an excellent cycling performance. The samples with larger lattice parameter have, in general, larger discharge capacities. The reduction curves in the cyclic voltammograms for the y=0.05-0.20 samples exhibit three peak showing that the reduction may proceed in three stages in these samples. For the samples with relatively large discharge capacity, the lattice destruction induced by strain causes the capacity fading of LiN $i_{y}$M $n_{2-y}$ $O_4$ with cycling.cling.ing.

Influence of Addition Timing and Dosage of ERCO on Autogenous Shrinkage and Fundamental Properties of HPFRCC (ERCO 혼입시기 및 혼입율 변화가 HPFRCC의 자기수축저감 및 기초적 특성에 미치는 영향)

  • Han, Cheon-Goo;Lee, Je-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.313-319
    • /
    • 2018
  • For the entire world, due to the increased risks of explosion and terrorisms, damages on human life and properties have been increased. Regarding this issue, research on high performance fiber reinforced cementitious composite (HPFRCC) with the protecting performance for the building structures or military facilities against explosion or bombing has been increased (important). Among a series of the research, using emulsified refined cooking oil(ERCO) to reduce the autogenous shrinkage may cause some adverse effect on performance of the mixture such as increased viscosity, decreased fluidity, air content, and strength. Hence, in this research, based on the optimum design of HPFRCC induced by previous research, the influence of ERCO adding timing and dosage on autogenous shrinkage and fundamental properties were analyzed. As a result, it was revealed that 0.5% of ERCO should be added right after the mixing is most effective for the quality of HPFRCC such as fluidity, strength development and autogenous shrinkage reducing.

Modeling of Flame Acceleration Considering Complex Confinement Effects in Combustible Gas Mixture (가연성 기체 혼합물에서 복잡한 구조에 따른 화염 가속 모델링)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • This paper presents a numerical investigation of the deflagration-to-detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene/air mixture as the combustible gas, considering geometrical changes by using obstacles and bent tubes. The model used consists of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment. Simulations with a variety of bent tubes with obstacles show the generation of hot spots through flame and strong shock-wave interactions, and restrained or accelerated flame propagation due to geometrical effects. In addition, the simulation results show that the DDT occurs with a nearly constant chemical heat-release rate of 20 MJ/($g{\bullet}s$) in our numerical setup. Furthermore, the DDT triggering time can be delayed by the absence of unreacted material together with insufficient pressures and temperatures induced by different flame shapes, although hot spots are formed in the same positions.

Environmental Effects and Characteristics of Ground Vibration Caused by Tunnel Blasting in the Vicinity of an Apartment (터널 발파로 인한 아파트 인근지역에서의 지반진동 전파특성 및 영향 평가 연구)

  • 최병희;류창하;백승규
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Explosive blasting in tunnel excavation produces ground vibration and air blast as its side effects, which may cause complaints from nearby residents. This study was intended to investigate the propagation characteristics of ground vibration induced by tunnel blasting and to evaluate its effects on the residential structures near the site. We have conducted field measurements for 6 blasts and acquired vibration data from 70 measuring points, some of which on positioned inside the tunnel for comparative reason. Various documentation was reviewed to determine an allowable level of peak particle velocity for the residential structures in the area and the allowable limit was set to 0.5 cm/sec. Propagation equations for peak particle velocities were derived from regression analyses using the data acquired at both the surface and the underground tunnel. Finally we proposed appropriate predictive equations for the two areas and a safe blasting criterion.

Relations Between Impact Damage and Ply Angle Under Same Impact Energy Condition (同一한 衝擊에너지 條件下의 CFRP 斜交積層板의 衝擊損傷과 配向角의 關係)

  • ;笠野英秋
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1824-1832
    • /
    • 1992
  • This study investigated the compressive Young's modulus and the impactinduced damage of CFRP angle-ply laminate under same impact energy condition. The specimens of angle-ply laminate composites [0.deg.$_{6}$/ .theta..deg.$_{10}$/ 0.deg.$_{6}$] with .theta..deg. =30.deg., 45.deg., 60.deg. and 90.deg. were employed, and damaged by steel balls of diameter of 5mm and 10mm propelled by air gun type impact testing machine. The impact damaged zones were observed through a scanning acoustic microscope(SAM), and their cross-sections were observed through a scanning electron microscope(SEM). The compressive Young's moduli before and after impact were measured, and compared with the theoretical values calculated. The results obtained were as follows: (1) The damage areas on the interfacial boundaries showed more severe change on the back side interface than on the impact side interface with increasing ply-angle. (2) The damage areas on the interfacial boundaries became larger with increasing impact velocity or ply-angle. (3) The impact damaged zone showed the delamination on the interfacial boundaries and transverse cracks inside laminas. (4) The impact damaged zone was affected by the impactor size and speed or ply-angle under same impact energy condition. (5) Compressive Young's moduli before and after impact were lower than theoretical value, but showed a similar change according to ply-angle. (6) Compressive Young's moduli after impact were higher than those before impact, but there was no remarkable change in apparent compressive modulus after impact.t.act.

Effect of Surface Dielectric Barrier Discharge on the Physiological Activities of Quercetin

  • Kim, Hyun-Joo;Yong, Hae In;Park, Sanghoo;Park, Jooyoung;Jung, Samooel;Choe, Wonho;Jo, Cheorun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.290-296
    • /
    • 2017
  • In this study, using the surface dielectric barrier discharge (DBD) produced at atmospheric pressure to improve the physiological activities of quercetin was investigated. Quercetin (at 200 ppm) was treated using air DBD with an input power of 250 W. The tyrosinase inhibition effect and total phenolic content of quercetin increased from 38.96 to 91.58% and from 134.53 to 152.93 ppm, respectively, after 20 min of plasma treatment. The antioxidant activity of quercetin treated for 20 min in the lipid models was higher than that of quercetin treated for 0, 5, and 10 min. Furthermore, plasma-treated quercetin exhibited antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus, whereas activity was not shown in the control. Structural modifications of the quercetin molecule induced by plasma might be responsible for the improvements in its physiological activity. These results indicate that DBD plasma could be used to enhance the physiological activity of quercetin for various applications in food.