• 제목/요약/키워드: Induced air

검색결과 1,070건 처리시간 0.029초

게이트 산화막 가장자리에 Air-cavity를 가지는 새로운 구조의 다결정 실리콘 박막 트랜지스터 (A New Poly-Si TFT Employing Air-Cavities at the Edge of Gate Oxide)

  • 이민철;정상훈;송인혁;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권8호
    • /
    • pp.365-370
    • /
    • 2001
  • We have proposed and fabricated a new poly-Si TFT employing air-cavities at the edges of gate oxide in order to reduce the vertical electric field induced near the drain due to low dielectric constant of air. Air-cavity has been successfully fabricated by employing the wet etching of gate oxide and APCVD (Atmospheric pressure chemical vapor deposition) oxide deposition. Our experimental results show that the leakage current of the proposed TFT is considerably reduced by the factor of 10 and threshold voltage shift under high gate bias is also reduced because the carrier injection into gate insulator over the drain depletion region is suppressed.

  • PDF

Barotrauma-Induced Pneumocephalus Experienced by a High Risk Patient after Commercial Air Travel

  • Huh, Jisoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권2호
    • /
    • pp.142-144
    • /
    • 2013
  • A 49-year-old female with a history of several neurosurgical and otolaryngologic procedures for occipital meningioma and cerebrospinal fluid leaks was diagnosed with pneumocephalus after a one hour flight on a domestic jet airliner. Despite multiple operations, the air appeared to enter the cranium through a weak portion of the skull base due to the low atmospheric pressure in the cabin. The intracranial air was absorbed with conservative management. The patient was recommended not to fly before a definite diagnostic work up and a sealing procedure for the cerebrospinal fluid leak site had been performed. Recent advances in aviation technology have enabled many people to travel by air, including individuals with medical conditions. Low cabin pressure is not dangerous to healthy individuals; however, practicing consultant neurosurgeons should understand the cabin environment and prepare high risk patients for safe air travel.

방사성(放射性) 폐액(廢液)의 자연증발(自然蒸發)에 관한 연구(硏究) (A Study on the Evaporation of Radioactive Liquid Waste)

  • 강일식;김태국;유성연
    • 설비공학논문집
    • /
    • 제5권1호
    • /
    • pp.18-26
    • /
    • 1993
  • The performance of the evaporation facility of low radioactive liquid waste is studied experimentally. The evaporation facility comprises storage pools, feeding pumps, evaporation units with 1,040 sheets of cloth and air handling units. As the results of this study, it is found that the evaporation rate increases as the waste feed rate increases, the relative humidity of induced air decreases, and the air velocity increases. The modified Dalton's evaporation equation derived from experimental data is $E_h=(0.0168+0.0141V){\Delta}H$. The optimum operating conditions of the evaporation facility are waste feed rate of $4.5./hr.m^2$ and air velocity of 1.47m/sec.

  • PDF

단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성 (Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine)

  • 신달호;박수한
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

태양열 이용 난방용 공기가열기 개발을 위한 기초 운전 특성 (Basic Operational Characteristics for Developments of Solar Air Heater for Air Heating in Winter)

  • 김종열;홍부표;우종수;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.87-94
    • /
    • 2011
  • To develop the solar air heater, prototype of solar heater with test room set up on the roof of test chamber and operation characteristics were examined with solar radiation. Air induced from outside was supplied by a blower and also heated air was supplied to the test chamber(size of 1,000mm(inwidth)*2,000mm(in length)*2,000mm(in depth)) established already for performance. It was clear that almost 30% of solar radiation was converted into effective heating energy at maximum and the highest air temperature was $46^{\circ}C$, and thus solar air heater in winter could be used as an possible alternative heating system in building. Furthermore, heat energy obtained from solar air heater can be applied to regenerate absorber in the solar desiccant cooling system.

공중파열탄용 포탄에 묻혀있는 탐지코일의 직경에 의한 유도전압 변화 (Diameter Effect of Induced Voltage in Sensing Coil Buried in Projectile for Application of Air Bursting Munition)

  • 류권상;남승훈;정재갑;손대락
    • 한국자기학회지
    • /
    • 제26권2호
    • /
    • pp.62-66
    • /
    • 2016
  • 포탄에 묻혀있는 탐지코일에서 유도되는 전압으로부터 총구를 떠나는 포탄의 초기속도를 계산하기 위하여 링 형태의 자석, 요크 및 탐지코일로 모델을 구성하였다. 자기장 해석에 의해 탐지코일의 유도전압에서 구한 마스터 곡선으로부터 포탄의 초기속도를 구할 수 있다. 탐지코일의 유도전압은 포탄에 묻혀있는 탐지코일 직경의 크기에 영향을 받는데, 직경의 크기가 증가하면 유도전압도 비례하여 증가한다. 탐지코일에서 유도되는 전압의 직경 효과를 감안한 초기속도 변화에 대한 정보를 입력하면 목표에서 포탄이 정확하게 폭발할 수 있다.

Peripheral Cellular Mechanisms of Artemin-induced Thermal Hyperalgesia in Rats

  • Kim, Hye-Jin;Yang, Kui-Ye;Lee, Min-Kyung;Park, Min-Kyoung;Son, Jo-Young;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In the present study, we investigated the role of peripheral ionotropic receptors in artemin-induced thermal hyperalgesia in the orofacial area. Male Sprague-Dawley rats weighting 230 to 280 g were used in the study. Under anesthesia, a polyethylene tube was implanted in the subcutaneous area of the vibrissa pad, which enabled drug-injection. After subcutaneous injection of artemin, changes in air-puff thresholds and head withdrawal latency time were evaluated. Subcutaneous injection of artemin (0.5 or $1{\mu}g$) produced significant thermal hyperalgesia in a dose-dependent manner. However, subcutaneous injection of artemin showed no effect on air-puff thresholds. IRTX ($4{\mu}g$), a TRPV1 receptor antagonist, D-AP5 (40 or $80{\mu}g$), an NMDA receptor antagonist, or NBQX (20 or $40{\mu}g$), an AMPA receptor antagonist, was injected subcutaneously 10 min prior to the artemin injection. Pretreatment with IRTX and D-AP5 significantly inhibited the artemin-induced thermal hyperalgesia. In contrast, pretreatment with both doses of NBQX showed no effect on artemin-induced thermal hyperalgesia. Moreover, pretreatment with H-89, a PKA inhibitor, and chelerythrine, a PKC inhibitor, decreased the artemin-induced thermal hyperalgesia. These results suggested that artemin-induced thermal hyperalgesia is mediated by the sensitized peripheral TRPV1 and NMDA receptor via activation of protein kinases.

유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구 (A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics)

  • 이태진;이순환;이화운
    • 한국환경과학회지
    • /
    • 제25권7호
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

2차 공기 주입방식에 따른 스토커형 소각로의 연소특성에 관한 수치해석적 연구 (A Numerical Study on the Combustion Characteristics for Stoker Type Incinerator with Various Injection Type of Secondary Air)

  • 정진;김창녕;조영민
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.835-842
    • /
    • 2003
  • A three dimensional numerical analysis has been conducted for a stoker type incinerator which has the capacity of 1.5 ton/hr. The objective of the present study is to predict the effects of swirl induced by secondary air and to find an optimal operating condition of the incinerator. In this study, combustion characteristics such as distributions of temperature, velocity and concentration of each species have been examined with various injection types of secondary air and with different flow rates of secondary air in the incinerator. It is found that the secondary air injection on the combustion process makes the path of fluid particle longer in the combustor and enhances the mixing between air and combustion gas by arousing a swirl. Therefore, the injection type of secondary air can be an important key in the design process of incinerator.

LASER-INDUCED SOOT VAPORIZATION CHARACTERISTICS IN THE LAMINAE DIFFUSION FLAMES

  • Park, J.K.;Lee, S.Y.;Santor, R.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.95-99
    • /
    • 2002
  • The characteristics of soot vaporization induced by a high-energy Pulsed laser were studied in an ethylene-air laminar flame. A system consisting of two pulsed lasers was used for the experiments. The pulse from the first laser was used to vaporize the soot particles, and the delayed pulse from the second laser was used to measure the residual soot volume fraction. Laser-induced soot vaporization was characterized according to the initial particle size distribution. The results indicated that soot particles could not be completely vaporized simply by introducing a high intensity laser pulse. Residual soot volume fractions present after vaporization appeared to be insensitive to the initial soot particle size distribution. Since the soot vaporization effect is more pronounced in the region of high soot concentrations, this laser-induced soot vaporization technique may be a very useful tool for measuring major species in highly sooting flame.