• Title/Summary/Keyword: Induced air

Search Result 1,074, Processing Time 0.032 seconds

Enhanced mass balance Tafel slope model for computer based FEM computation of corrosion rate of steel reinforced concrete coupled with CO2 transport

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • This research paper aims at computer based modeling of carbonation induced corrosion under extreme conditions and its experimental verification by incorporating enhanced electrochemical and mass balance equations based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of carbonated concrete for which the previous research data is limited. In this paper the carbonation induced electrochemical corrosion model is developed and coupled with carbon dioxide transport computational model by the use of a concrete durability computer based model DuCOM developed by our research group at concrete laboratory in the University of Tokyo and its reliability is checked in the light of experiment results of carbonation induced corrosion mass loss obtained in this research. The comparison of model analysis and experiment results shows a fair agreement. The carbonation induced corrosion model computation reasonably predicts the quantitative behavior of corrosion rate for normal air dry relative humidity conditions. The computational model developed also shows fair qualitative corrosion rate simulation and analysis for various pH levels and coupled environmental actions of chloride and carbonation. Detailed verification of the model for the quantitative carbonation induced corrosion rate computation under varying relative conditions, different pH levels and combined effects of carbonation and chloride attack remain as scope for future research.

Effects of induced heat stress on temperature response and biochemistry: alteration of biochemical constituents in Holstein calves by heat stress

  • Lim, Hyun-Joo;Ki, Kwang-Seok
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.637-643
    • /
    • 2019
  • The aim of the present study was to evaluate the effect of the induced heat stress on physiological response and serum biochemical parameters involving glucose, cholesterol, blood urea nitrogen (BUN), non-esterified fatty acids (NEFA), and cortisol in Holstein calves. Ten calves were kept in a climate controlled room (air temperature $37^{\circ}C$ and 90% humidity from 09:00 to 19:00) for three days. Those animals were given a one-day adaptation period. During the treatment period, we measured the skin temperature six times. Following the treatment periods, blood samples were collected before the experiment began (09:00) and at the end of the stress period (19:00). To aid analysis of the biochemical parameters, also we monitored the rectal temperature. The results, exhibited that both rectal and skin temperature showed increase in the heat stress-induced animals as compared with unstressed animals. Moreover, we noticed that the levels of BUN and NEFA increased in the blood serum of heat stress induced animals when compared with un-stressed ones. From these results, we concluded that the physiological and biochemical changes in the calves were induced by heat stress. Hence, the present study findings could be employed as base line data for development of stress reduction techniques in the dairy industry.

One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow (공기와 물의 이상 자연순환 유동의 1 차원 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Jae-Cheol;Hong, Seong-Wan;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

Computational Simulation of Combustion in Power Plant Boiler Acconling to Un-Even Combustion Air (연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션)

  • Go, Young-Gun;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.137-144
    • /
    • 2006
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

Development of Numerical Model for Unsteady Flow Analysis jin Discharge Culvert of Thermal Power Plant: II. Model Application (열발전소 배수암거 부정류해석 수치모형의 개발 : II. 모형의 적용)

  • Yun, Seong-Beom;Lee, Gi-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.769-776
    • /
    • 1997
  • The behavior of surge induced in the discharge system of the thermal power plants by the sudden stop of cooling water pump is analyzed using the numerical model developed by Yoon and Lee (1997). Various effects, which are ignored earlier, such as discharge from internal system, air chamber and air inlet of seal well, monholes, open channel and sea are included. These effects of the surge behavior are systematically analyzed. Especially, the surge control effect and air pressure change in the air chamber associated with the area of air inlet are presented for easy application in practice.

  • PDF

Computational Simulation of Combustion in Power Plant Boiler According to Un-Even Combustion Air (연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션)

  • Go, Young-Gun;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.85-92
    • /
    • 2005
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

A Study on Treatment Efficiency of Toluene and CO2 using Vortex Cyclones (보텍스 사이클론을 이용한 Toluene과 CO2 처리효율에 관한 연구)

  • 임계규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.493-501
    • /
    • 2004
  • The principle of vortex tube and cyclone was introduced to enhance the treatment efficiency of waste air streams containing particulate matters, toluene, and others developed by Hangreen Tech, Ltd. and Hoseo Chemical and Industrial Technology R&D Center. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by vortex tube and Joule-Thomson expansion. The pressurized air was introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube. Easily condensible vapors such as toluene. carbon dioxide, and water vapor were adsorbed enforcedly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves. These types of coagulation or condensation rates were rapidly promoted as the diameter being growing up. The maximum removal efficiency for carbon dioxide and toluene was achieved to about 87 and 90 percent, respectively. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 30%. An optimum value was observed within the range of the tested temperatures at a fixed pressure. In conclusion. it could be identified that the treatment efficiency would be depended on the pressure of the process air introduced and physical and chemical characteristics of waste air streams containing target materials for a designed system. The final design parameters should be decided depending upon the given system and target materials.

A Study on Integrated OWC System within Turbine Effects

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Lee, Young-Yeon;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • Oscillating Water Column is one of the most widely used converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to study the effects of the pressure drop induced by the air turbine, the experiments using the impulse turbine and the orifice device are carried out in the wave simulator test rig. The numerical simulation utilizing the orifice and porous media modules is calculated and validated by the corresponding experimental data. The numerical wave tank based on the two-phase VOF model embedded with the above modules is employed to investigate the wave elevation, pressure variation inside the chamber and the air flow velocity in the duct. The effects of the air turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated, which demonstrates that the present numerical model are more accurate to be employed.

In situ measurement-based partitioning behavior of perfluoroalkyl acids in the atmosphere

  • Kim, Seung-Kyu;Li, Donghao;Kannan, Kurunthachalam
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.281-289
    • /
    • 2020
  • Environmental fate of ionizable organic pollutants such as perfluoroalkyl acids (PFAAs) are of increasing interest but has not been well understood because of uncertain values for parameters related with atmospheric interphase partitioning behavior. In the present study, not only the values for air-water partition coefficient (KAW) and dissociation constant (pKa) of PFAAs were induced by adjusting to in situ measurements of air-water distribution coefficient between vapor phase and rainwater but also gas-particle partition coefficients were also estimated using three-phase partitioning model of ionizable organic pollutants, in situ measurements of PFAAs in aerosol and air vapor phase, and obtained parameter values. The pKa values of PFAAs we obtained were close to the minimum values suggested in literature except for perfluorooctane sulfonic acids, and COSMOtherm-modeled KAW values were assessed to more appropriate among suggested values. When applying parameter values we obtained, it was predicted that air particle-associated fate and transport of PFAAs could be negligible and PFAAs could distribute ubiquitously along the transection from urban to rural region by pH-dependent phase transfer in air. Our study is expected to have some implications in prediction of the environmental redistribution of other ionizable organic compounds.

The Present State of an Air Pollutants Inflow into Gyeongju and Effects on Stone Cultural Properties (경주권역으로의 대기오염물질 유입현황과 석조문화재에 미치는 영향)

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Kim, Hyun-Gyu;Choi, Won-Joon;Nam, Chul-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.349-359
    • /
    • 2005
  • In this study, we focused on the geographical and the meterological conditions, the atmospheric examination, the soil contents and compositions in order to establish cultural properties conservation plan in Gyeongju and its surroundings. Also, the transport route with environmental contaminants in Ulsan and Pohang was examined. The results could be summarized as follows ; Air pollutant and environmental contaminant was transported by two types of winds. One is induced by local winds, the other is induced by synoptic winds. Air contaminant transported from coastal regions to inland regions were associated with wind velocity. Gyeongju had good atmospheric conditions, i.e. $SO_2\;0.009{\sim}0.011ppm,\;CO\;0.6{\sim}0.8ppm,\;NO_2\;0.015{\sim}0.020ppm,\;O_3\;0.017{\sim}0.032ppm,\;PM_{10}\;46{\sim}62{\mu}g/m^3\;and\;Pb\;0.034{\sim}0.060{\mu}g/m^3$, which was below environmental air qualify standards and was little lower than those of Pohang and Ulsan. However, Ulsan and Pohang city are located on south-east coast and have many industrial facilities. Hence, air pollution problems become serious issues in Ulsan, Pohang, Busan, Daegu and other cities due to the emission of air pollutants from the various industrial facilities, incinerator and power plants, etc. The soil of Gyeongju had heavy metals conditions, i.e. $Cd\;0.01{\sim}0.08mg/kg,\;Cu\;N.D{\sim}2.39mg/kg,\;As\;N.D{\sim}0.07mg/kg,\;Hg\;N.D{\sim}0.15mg/kg,\;Pb\;0.49{\sim}1.39mg/kg,\;Cr^{+6}\;0.02{\sim}0.42mg/kg,\;Fe\;0.74{\sim}1.55mg/kg,\;Mn\;0.11{\sim}0.49mg/kg\;and\;Zn\;1.11{\sim}3.56mg/kg$. However, pH value of soil had range of $4.12{\sim}7.45$. The results showed that high pH concentration of soil could occur due to air pollution diffusion and environmental contaminant transport at Ulsan and Pohang city.