• 제목/요약/키워드: Induced Velocity

검색결과 1,118건 처리시간 0.027초

유도된 다리길이 차이가 안정성한계와 정적 자세균형에 미치는 영향 (Effect of Induced Leg Length Discrepancy on the Limitation of Stability and Static Postural Balance)

  • 한진태
    • PNF and Movement
    • /
    • 제16권2호
    • /
    • pp.267-273
    • /
    • 2018
  • Purpose: Leg length discrepancy (LLD) is one of the risk factors for postural imbalance. This study aimed to investigate the effect of induced leg length discrepancy on the limitation of stability (LOS) and static postural balance. Methods: Thirteen adults (males, 7; females 6) participated in this study. The LOS and static postural balance [sway length, sway area, and sway velocity of center of gravity (COG) displacement] were measured by the balance trainer system. The subjects were asked to move the COG for the anterior, posterior, and left and right directions maximally and to keep standing on the platform with and without induced LLD for 30 s in the open and closed eyes conditions, respectively. The LLD was artificially induced to 2 cm using insole. Wilcoxon test was used to compare the LOS and the static postural balance between with and without induced LLD. Results: The anterior and posterior LOS significantly decreased in induced LLD (p<0.05), and the left and right LOS were not significantly different between with and without LLD (p>0.05). Sway length, sway area, and sway velocity of the COG displacement significantly decreased in induced LLD (p<0.05). Conclusion: This study suggests that induced LLD could decease the antero-posterior LOS and increased the static postural balance. Therefore, the LLD could disturb the postural balance.

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석 (Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data)

  • 손무락;유재하;안성수;황영철;박두희;문두형
    • 한국지반환경공학회 논문집
    • /
    • 제16권9호
    • /
    • pp.23-32
    • /
    • 2015
  • 본 논문에서는 암석발파 유발 진동에 대한 포괄적인 추세특성을 파악하기 위하여 국내 97개의 현장에서 계측된 시험발파진동에 관한 자료를 이용하여 굴착종류(터널, 벤치굴착) 및 암석종류별로 발파진동의 특성을 조사 및 검토하였다. 계측된 자료는 주로 강원도 및 경상도 지역의 시험발파 현장으로부터 획득하였으며, 계측현장 자료의 암석종류는 화강암이 제일 많았으며 그다음으로 편마암, 석회암, 사암, 셰일 순으로 나타났다. 본 연구를 통한 분석 결과, 발파진동 속도는 굴착종류(터널, 벤치)에 따라 영향을 받는 것으로 나타났으며, 터널발파에 비하여 벤치발파에 의한 진동속도가 더 크게 발생하는 것으로 나타났다. 또한 발파진동은 암석종류에 따라 크게 영향을 받는 것으로 나타나 향후 암석종류를 포함한 발파진동 추정식 관리가 필요할 것으로 나타났다. 이와 더불어 본 연구를 통해 얻어진 결과와 기존의 국내 발파진동 추정식에 의한 결과들과 상호 비교하였으며, 비교결과 터널발파에서 자승근식을 이용한 결과를 제외하곤 큰 차이가 나타나 향후 암반에서의 발파진동 추정과 관련하여 암석의 강도 및 절리특성, 지층분포, 굴착종류, 사용화약, 계측장비 및 방법 등의 영향을 종합적으로 반영한 더욱더 많은 연구 및 관심이 필요할 것으로 판단된다.

Wave Generation And Wind-Induced Shear Current In Water

  • Choi, Injune
    • 한국해양학회지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 1980
  • The results of measurements of shear current induced in water by wind in wind wave tunnel are presented briefly. The shear current distributions are found to fit reasonably well an exponentiall form. This form was used to estimate surface velocity and boundary layer thickness used in stability analysis. An analysis of hydrodynamic stability of the shear current was carried out, using a broken line as an approximate profile, to see the stability as a possible mechanism of wind wave generation. Comparison between experimental results and theoretical ones shows that there exists a large discrepancy particularly in phase velocity and hydrodynamic instability of the shear current seems not to be the basic mechanism of wind wave generation.

  • PDF

분리형 에어컨의 실내기 냉매 소음 저감 분석 (Analyzing for Refrigerant Induced Noise for Split Type Air Conditioner Indoor Unit)

  • 시케오 아오야마;모진용;이재권;송용재;한형석
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.240-246
    • /
    • 2006
  • In the air-conditioner, refrigerant induced noise and vibration can be increased when the airflow rate is reduced in order to decrease the noise at the low mode. Through the test and analysis of this kind of noise, it can be verified that the main reasons of refrigerant induced noise are the velocity and flow Induced force of the refrigerant at the inlet of the evaporator, So, in order to reduce this velocity, quality at the evaporator inlet should be minimized. And, in order to reduce flow induced force of the refrigerant, sudden change of fluid flow must not be occurred. So, in this paper, we will review the characteristics of refrigerant cycle and find how the quality and flow induced force can be minimized.

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

Mitigation of wind-induced responses of cylinder solar tower by a tiny eddy current tuned mass damper based on elastic wind tunnel tests

  • Liu, Min;Li, Shouying;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.619-629
    • /
    • 2020
  • Solar towers, which often has a large aspect ratio and low fundamental natural frequency, were extremely prone to large amplitude of wind-induced vibrations, especially Vortex-Induced Vibration (VIV). A tiny Tuned Mass Damper (TMD) with conveniently adjustable eddy current damping was specially designed and manufactured for elastic wind tunnel tests of a solar tower. A series of numerical simulations by using the COMSOL software were conducted to determine three key parameters, including the thickness of the back iron plate and the conductive plate (Tb and Tc), the distance between the magnet and the conductive plate (Td). Based on the results of numerical simulations, a tiny TMD was manufactured and its structural parameters were experimentally identified. The optimized values of the tiny TMD can be conveniently realized. The tiny TMD was installed at the top of the elastic test model of a 243-meter-high solar tower, and a series of wind tunnel tests were carried out to examine the effectiveness of the TMD in suppressing wind-induced responses of the test model. The results showed that the wind-induced responses could be obviously reduced by the TMD, especially in the cross-wind direction. The cross-wind RMS and peak responses at the critical wind velocity can be reduced by about 86% and 75%, respectively. However, the maximum reduction of the responses at the design wind velocity is about 45%, obviously less than that at the critical wind velocity.

The Analysis of Flow-Induced Vibration and Design Improvement in KSNP Steam Generators of UCN #5, 6

  • Kim, Sang-Nyung;Cho, Yeon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.74-81
    • /
    • 2004
  • The KSNP Steam Generators (Youngkwang Unit 3 and 4, Ulchin Unit 3 and 4) have a problem of U-tube fretting wear due to Flow Induced Vibration (FIV). In particular, the wear is localized and concentrated in a small area of upper part of U-bend in the Central Cavity region. The region has some conditions susceptible to the FIV, which are high flow velocity, high void fraction, and long unsupported span. Even though the FIV could be occurred by many mechanisms, the main mechanism would be fluid-elastic instability, or turbulent excitation. To remedy the problem, Eggcrate Flow Distribution Plate (EFDP) was installed in the Central Cavity region or Ulchin Unit 5 and 6 steam generators, so that it reduces the flow velocity in the region to a certain level. However, the cause of the FIV and the effectiveness of the EFDP was not thoroughly studied and checked. In this study, therefore the Stability Ratio (SR), which is the ratio of the actual velocity to the critical velocity, was compared between the value before the installation of EFDP and that after. Also the possibility of fluid-elastic instability of KSNP steam generator and the effectiveness of EFDP were checked based on the ATHOS3 code calculation and the Pettigrew's experimental results. The calculated results were plotted in a fluid-elastic instability criteria-diagram (Pettigrew, 1998, Fig. 9). The plotted result showed that KSNP steam generator with EFDP had the margin of Fluid-Elastic Instability by almost 25%.