• Title/Summary/Keyword: Indoors Position Identification System

Search Result 3, Processing Time 0.015 seconds

A Study on Data Gata Gateway for Indoor Location Detection and Its Upload (실내 위치정보 확인 시스템 및 데이터 게이트웨이 구현에 대한 연구)

  • Cho, Youngseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.63-69
    • /
    • 2016
  • Although the previous information technologies had been used for the quick and accurate processing of work, At present, however, as the combination with the Internet, the IOT(Internet-of-Things) era in which the diverse pieces of information are collected and handled through the sensor networks is in progress. Among these application fields of the IoT, the indoors position identification technology has been developing in the direction of providing the position information in the buildings of which the lengths and the interiors are complicated and in the direction of providing the various pieces of information and others of the like to the nearby customers. In this paper, we proposed an indoors position identification system that detects the patrol positions of the prison officers in the correctional facilities and in the prisons by using the ultrasonic waves, that transmits these to the control system and the data gateway, and that transmits the detected data. The Indoors Positioning identification System is organized with the tags for recognizing the positions that transmit the ultrasonic signal, ultrasonic receiver and data gateway. And the indoors position information data were transmitted to the management system through the data gateway. We evaluated the transmission error, by changing the distance of the proposed system for location recognition tag and the receiver, As a result, we found out that, when the transmission distance was 10 cm or less, the errors occurred in the form of the distortions. And when it was 110 cm or more, the transmission errors occurred due to the propagation diminutions of the ultrasonic wave signals. And when the transmission distance was from 10 cm to 100 cm, it was shown that the proposed system was possible without any errors.

A Position Tracking System Using Pattern Matching and Regression Curve (RFID 태그를 이용한 실내 위치 추적 시스템에 관한 연구)

  • Cho, Jaehyung
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.211-217
    • /
    • 2019
  • Location positioning systems are available in applications such as mobile, robotic tracking systems and Wireless location-based service (LBS) applications. The GPS system is the most well-known location tracking system, but it is not easy to use indoors. The method of radio frequency identification (RFID) location tracking was studied in terms of cost-effectiveness for indoor location tracking systems. Most RFID systems use active RFID tags using expendable batteries, but in this paper, an inexpensive indoor location tracking system using passive RFID tags has been developed. A pattern matching method and a system for tracing location by generating regression curves were studied to use precision tracking algorithms. The system was tested by verifying the level of error caused by noise. The three-dimensional curves are produced by the regression equation estimated the statistically meaningful coordinates by the differential equation. The proposed system could also be applied to mobile robot systems, AGVs and mobile phone LBSs.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.