• Title/Summary/Keyword: Indoor pollution

Search Result 475, Processing Time 0.179 seconds

Removing Malodor Using Photocatalyst and Infrared (광촉매와 적외선을 이용한 악취저감)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.528-533
    • /
    • 2014
  • Recently, people interest in environmental pollution and attempt to improve the indoor air quality contaminated with various pollutants since it is very important to construct healthy and comfortable living environment. In the current study, we used the technology that has first received the certification of green technology for improving the removal efficiency of malodor causing substances. This green technology is a new technology to increase the reactivity of the odorous substances with OH radicals for oxidation reaction by using an infrared lamp in the existing air purification system. Comparing the efficiency of the green technology with the infrared lamp to that of the existing technology of air cleaner, there was a difference in the decomposition efficiency depending on the initial concentrations and speciation of the odorous substances. The removal efficiencies of contaminants were enhanced by 16.9 and 13.2% at low and high concentrations, respectively.

A Study on the Reduction of Volatile Organic Compounds by Fatsia japonica and Ardisia pusilla (팔손이와 산호수에 의한 휘발성유기화합물 저감효과에 관한 연구)

  • Song, Jeong Eun
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.77-82
    • /
    • 2012
  • This study conducted the experiment of reduction of Volatile Organic Compounds(VOCs) and Formaldehyde concentration by Native plants, Fatsia japonica and Ardisia pusilla. The two plants are advantageous in that they are highly available as they grow wild, and being easy to get. Fatsia japonica is a plant of its wide and large leaf diverged 7 or 8 parts, which is thought to have a high effect of air purification. Ardisia pusilla has a smaller leaf than Fatsia japonica, which is characterized by more leaves and beautiful. Field measurements were performed using Fatsia japonica and Ardisia pusilla which were verified as air-purifying plants in Korea. The effect of reducing the concentration of VOCs and Formaldehyde by plant studied in a full scale mock-up model. The dimensions of the two models were equal. The concentration of Benzene, Toluene, Ethylbenzene, Xylene, Stylene, Formaldehyde were monitored, since they were known as most toxic materials. The concentration of VOCs was monitored three hours after the plants were placed and three days after the plants were placed. Field measurements were performed in models where the plants were placed and were not. As a result, they had all an effect of reducing pollution. In all cases of experiment of planting and growing volume, the more planting volume, the more excellent the effect. Toluene was more effective in Fatsia japonica and Ardisia pusilla planted, Formaldehyde was more effective in Fatsia japonica planted respectively. In planting and growing and placing experiment, the placement at sunny spot was more effective than that at scattered growing. When Fatsia japonica was placed at sunny spot, the reduction effect of Formaldehyde was the most excellent, and when Ardisia pusilla was placed at sunny spot, the reduction effect of Toluene was the most effective.

Development and Prospects of Environmental Health Indicators in Korea (우리나라 환경보건지표 개발현황과 전망)

  • Lee, Young-Mee;Jung, Soon-Won;Choi, Wookhee;Park, Kyung-Hwa;Lee, Chul-Woo;Yu, Seung-Do;Park, Choong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.5
    • /
    • pp.293-301
    • /
    • 2016
  • Objectives: This paper presents the current development progress of environmental health indicators (EHIs) in the Republic of Korea and discusses the utilization, limitations and prospects of EHIs. Methods: The development process and assessment criteria of EHIs were established based on the DPSEEA (Driving force-Pressure-State-Exposure-Effect-Action) framework with reference to that of the World Health Organization-Europe. In order to explore the applicability of EHIs, a case study was performed to compare the atmospheric environmental health status between the Republic of Korea and European region countries using six indicators. Results: Through the development process, 23 indicators in five areas including air quality, indoor air quality, climate change, chemicals, and water quality were developed, mostly using national statistical data. As a result of the case study comparing environmental health indicators in air quality between the Republic of Korea and Europe, it could be useful to understand the different situation of air pollution source, emission, exposure and health effects. Conclusion: In order for EHIs to compare environmental health status and be used as an environmental health policy development tool for vulnerable areas and related factors, it is necessary to develop further indicators for various issues other than air quality and conduct additional research on their interpretation and related implications, such as policy implementation effects.

Isoprostane Characteristics in Sick House Syndrome, Atopy and Asthma Patient

  • Choi, Dal-Woong;Sohn, Jong-Ryeul;Moon, Kyung-Hwan;Byeon, Sang-Hoon;Lee, Jang-Hi;Kim, Hi-Choi;Kim, Young-Hwan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.289-292
    • /
    • 2005
  • An imbalance between oxidants and antioxidants, in favor of oxidants leading to oxidative stress, is known to play an important role in the pathogenesis of various diseases. Isoprostanes are structurally stable isomers of the conventional enzymatically derived prostaglandins, which are produced in vivo primarily by a free radical catalyzed peroxidation of polyunsaturated fatty acids. In asthmatics, disease severity can occur from environmental exposure to air pollution. Some surveys suggested that air pollutants, especially diesel-exhaust particulates, could trigger allergic sensitization and development of atopic diseases. Sick house syndrome (SHS) presents healthy damage owing to the indoor environment of a building. The aim of this study was to examine isoprostane as a parameter fur oxidative stress in environments related diseases such as sick house syndrome, atopy and asthma. We measured plasma and urinary levels of isoprostane from health volunteers, sick house syndrome, atopy and asthma patients. Plasma isoprostane concentrations in asthma and sick house syndrome group were significantly higher than in control. Urinary isoprostane levels were significantly higher in volunteers with sick house syndrome and asthma compared with health volunteers. These findings suggest that plasma and urinary isoprostane measurement may have useful clinical implications for investigating sick house syndrome and asthma. The interventions that decrease exposure to environmental reactive oxygen species might be beneficial in these diseases.

  • PDF

A Study on the Improvement of Classifying Method of the Sky Conditions for Application of the Daylight at Indoor - The Comparison with Cloud Amount and Measured Solar Horizontal Irradiation in Seoul - (실내 주광 활용을 위한 천공 구분 방법 개선에 관한 연구 - 서울의 전운량과 측정 일사량의 비교를 통해 -)

  • Kim, Yu-Sin;Kim, Hyun-Sun;Hong, Seong-Kwan;Park, Byoung-Chul;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Sky cover method can be used to determine sky condition by cloud amount of the Korea Meteorological Administration. And, HCI (Hourly Clearness Index) method is another method determined by measured horizontal global radiation data. The results of the HCI methods of Erbs et al. (1982), Orgill and Hollands (1977) seem to be not good enough because of the air pollution such as smog phenomenon or yellow sand phenomenon and so on. Therefore, HCI should be corrected. The aim of this study is to improve HCI. Therefore, this study is to analyze and compare on the sky conditions from Sky cover method and HCI, and then presents hourly correction factor based on Sky 채팩 method. The results of corrected HCI improved.

A Study on the Applicability of Corrosion Inhibitor for Outdoor Copper Alloy

  • Shin, Jeong Ah;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.259-271
    • /
    • 2018
  • Outdoor copper alloy is exposed to the atmospheric environment, accelerating corrosion progress compared with indoor copper alloy. In order to prevent corrosion, the outdoor copper alloy is coated with wax to block external corrosion factors. However, corrosion of the inside of the coating film is highly likely to continue without the internal corrosion prevention treatment. B.T.A, which is used as a copper alloy water-soluble corrosion inhibitor, has a high possibility of being harmful to the human body and is mainly used to treat excavated artifacts. This study had selected the water-soluble corrosion inhibitor, which was easier to use than the existing wax and B.T.A being used in corrosion inhibition treatment for outdoor copper alloy. A comparative study was conducted on B.T.A, which is a water-soluble corrosion inhibitor used on excavated artifacts, and $VCI^{(R)}$, $Rus^{(R)}$, and L-cys, an amino acid corrosion inhibitor, used for tin bronze test pieces. The experimental method was conducted for a certain period of time with the salt, acid, and air pollution affecting the corrosion of outdoor copper alloy. Based on experiment results, it was concluded that the best water - soluble copper alloy corrosion inhibitor in the atmospheric environment is $VCI^{(R)}$. and it could be considered to be applied in replacement of B.T.A due to its low harmfulness. In addition, $VCI^{(R)}$ is judged to serve as a corrosion inhibitor for outdoor copper alloy because it showed the best result even in the outdoor exposure test which is a real atmospheric environment.

Characterization of Atmospheric Concentrations of Volatile Organic Compounds in Industrial Areas of Pohang and Gumi Cities (포항과 구미의 대규모 산단지역 대기 중 휘발성 유기화합물 농도 분포 특성에 관한 연구)

  • Baek Sung-Ok;Kim Soo-Hyun;Kim Mi-Hyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.167-178
    • /
    • 2005
  • This study was carried out to evaluate the temporal, spatial, and seasonal variations of VOC, and to characterize the VOC concentrations in two large industrial complexes located in Pohang and Gumi cities. Twenty -four hours continuous sampling of selected VOC was made with STS 25 sequential tube samplers and double-bed adsorbent tubes. Air samples were collected every three hour interval for 7 consecutive days in each site during summer and winter. VOC were determined by thermal desorption coupled with GC/MS. A total of 27 VOCs of environmental concern were determined, including aliphatic, aromatic and halides. Generally. concentrations of toxic VOC were higher in Gumi than Pohang, and VOC levels in industrial areas were typically several-fold higher than those in residential areas. The most abundant VOC appeared to be toluene for both cities. However, chlorinated VOC were higher in Gumi than Pohang, while aromatic VOC were more abundant in Pohang than in Gumi. Two cities showed relatively different variations of VOC concentrations within a day. It is likely that traffic related sources are major factors affecting the VOC in Pohang, and industrial solvents usages are important sources in Gumi. These results imply that the occurrence and levels of atmospheric VOC are strongly dependent on the type of industries in each city. Therefore, in order to develop any control strategies or to establish the priority rankings for VOC in large industrial complexes, the type of industries and the occurrence of VOC in the atmosphere should be taken into consideration.

A Numerical Study on the Performance Improvement of Kitchen Range Hood by Air Induction and Air Curtain (유도공기 및 에어커튼을 이용한 주방 레인지후드 성능 개선에 관한 수치모사)

  • Sohn, Deok-Young;Lim, Ji-Hong;Choi, Yun-Ho;Park, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.321-327
    • /
    • 2007
  • In an apartment house that is generally air-tight and well insulated, the combustion gas from cooking devices is the major source of air pollution in the kitchen. It spreads throughout the house affecting the overall Indoor all quality. In this study, the performance of the kitchen range hood which employs air induction and air curtain was investigated by numerical simulation. The results are compared with that of two other kitchen range hoods which are in general use. The two general types of range hoods considered in the present calculations are box and plate type range hoods. The former has a large capture space between the filter and suction duct, while the latter has little. It was found that the capture efficiency of the kitchen range hood with air induction and air curtain Is higher than that of the general types of range hoods by 20% approximately The reason may be because the air induction and the air curtain block the air stream escaping from the front and the side part of range hoods effectively and because an additional fan for air induction and air curtain increases suction flow rates.

Control of Airborne Organic Pollutants Using Plug-Flow Reactor Coated With Carbon Material-Titania Mixtures Under Visible-Light Irradiation

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Mo-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1263-1271
    • /
    • 2013
  • Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of $TiO_2$ nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, $TiO_2$-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the $TiO_2$-GO composites. The average efficiencies of the $TiO_2$-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified $TiO_2$ powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified $TiO_2$ powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a $TiO_2$-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.

Adsorption characteristics of the sericite and diatomite for ammonia gas (견운모와 규조토에 대한 암모니아 기체의 흡착특성)

  • Lee, Suseung;Kim, Jinsoo;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.175-181
    • /
    • 2006
  • The feasibility of the use of porous fossil diatoms for indoor air pollution control was investigated via the characterization of physical and chemical properties. The fossil diatoms were observed by SEM(Scanning Electron Microscope). Diatomite had well-distributed pores below 5 nm and relatively large surface area compare to sericite. However, no porosity in sericite was found. Results showed that diatomite had better performance than sericite in respect to porosity and large surface area. But diatomite which is thermally treated at $950^{\circ}C$ has no porosity and low surface area because of combustion of fossil diatoms or calcination of inorganic oxide at high temperature, and has poor adsorption capability of ammonia gas. In conclusion, porous diatomite has relatively high performance to adsorb noxious chemical compounds, such as ammonia gas and VOCs.

  • PDF