• Title/Summary/Keyword: Indoor load

Search Result 260, Processing Time 0.029 seconds

The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer (고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구)

  • Lee, Hyun-Jung;Yeom, Dongwoo;Lee, Kyu-In
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.

An Experimental Study on Comparing Solar Heat Shading Performances in Accordance with the Type of Internal Blinds in the Summer (하절기 내측 블라인드의 유형별 일사차폐성능 비교 실측연구)

  • Park, Eun-Mi;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • The purpose of this study was to compare heat shading performance of various blind types in summer. 4 types of blinds were employed and the results are summarized as follows: 1) There were significant differences in indoor thermal environment and heat shading performance between different heat shading devices, and functional blinds demonstrated relatively superior heat shading performance. 2) Indoor long wave radiation influx measures were lowest for the coating roll blind (Blind B), followed by the coating venetian blind (Blind C), the venetian blind (Blind A), the roll blind, and not having any blinds at all. 3) Such examination results carry implications to reduce cooling load and enhance the indoor environment.

Performance of the Flow Distribution and Capacity Modulation of a Multi-Heat Pump System (멀티형 열펌프의 유량분배 및 용량조절 특성)

  • 최종민;김용찬;하진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.313-320
    • /
    • 2001
  • In the present study, various experiments were performed to investigate capacity modulation and refrigerant flow distribution of a multi-heat pump using a variable speed compressor and electronic expansion valves(EEVs) in the cooling mode. Based on the experimental results, it was possible to understand the interrelation of dual indoor units which provides some difficulties in capacity control of each indoor unit. The characteristics of capacity modulation of two indoor units were measured by controlling two EEVs with a cooling load of each indoor unit.

  • PDF

Thermal Comfort and Air Flow Patterns for Indoor Unit Positions and Ventilation Rates in Cooling Operation (냉방조건에서 실내기 위치 및 환기량에 따른 열쾌적성 및 유동 특성)

  • Koh, Jae-Yoon;Kang, Tae-Wook;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2008
  • This study analyze indoor thermal comfort properties such as PMV, PPD and fluid variables when the cooling loads are light, occupant and ventilation. There are 6 cases to study for the indoor unit installation conditions and ventilation rates. Numerical method is used to study the indoor environmental properties and experimental study is adapted to analyze reaching time by variable cooling load conditions.

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.

An Analysis of Indoor Thermal Environment by Macro Model (매크로 모델에 의한 실내온열환경 검토)

  • Jung, Jae-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.584-589
    • /
    • 2008
  • It is known that slab thermal storage which uses concrete slab as thermal material is effective in the load leveling and using the nighttime electric power. The temperature distribution is not constant in plenum in thermal storage time by beams, ducts such as several factor. It is considered that this fact will effect on efficiency of thermal storage and indoor thermal environment. The purpose of this paper is to examine the thermal environment inside plenum. A macro model was made for the analysis of indoor thermal environment as the first step. The flow rate distribution and temperature distribution of object room model was examined by use of basic equations such as airflow by the pressure difference between unit cells, heat flow by air and heat transfer.

  • PDF

Development of Augmented Reality Indoor Navigation System based on Enhanced A* Algorithm

  • Yao, Dexiang;Park, Dong-Won;An, Syung-Og;Kim, Soo Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4606-4623
    • /
    • 2019
  • Nowadays modern cities develop in a very rapid speed. Buildings become larger than ever and the interior structures of the buildings are even more complex. This drives a high demand for precise and accurate indoor navigation systems. Although the existing commercially available 2D indoor navigation system can help users quickly find the best path to their destination, it does not intuitively guide users to their destination. In contrast, an indoor navigation system combined with augmented reality technology can efficiently guide the user to the destination in real time. Such practical applications still have various problems like position accuracy, position drift, and calculation delay, which causes errors in the navigation route and result in navigation failure. During the navigation process, the large computation load and frequent correction of the displayed paths can be a huge burden for the terminal device. Therefore, the navigation algorithm and navigation logic need to be improved in the practical applications. This paper proposes an improved navigation algorithm and navigation logic to solve the problems, creating a more accurate and effective augmented reality indoor navigation system.

The Study on Lighting Load of Lower-part in Apartment Houses (공동주택 저층부의 조명부하에 관한 연구)

  • Lee, Dong-Wook;Lee, Jun-Gi;Lee, Gab-Taek;Kim, Yong-Tae;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2016
  • The study is arranged in the form of plate-shaped in the Apartment Houses with placed at right angles. After examined the daylight environment and the indoor illumination in this form of Apartment Houses, in order to improve the daylight environment of the lower floors, I examined the daylight environment. In order to match the indoor illumination, as a standard illumination 400lx, I examine the necessary lighting energy based on the direction and time for the different parts in the Apartment Houses, As the first floor, the lowest power requirement appeared to the South(457W), and the most power requirement appeared to the East(843W).

Measurement of the indoor power line channel characteristic (옥내 전력선 통신 채널 특성 측정)

  • Heo, Yun-Seok
    • The Journal of Information Technology
    • /
    • v.7 no.3
    • /
    • pp.1-10
    • /
    • 2004
  • Considerable efforts has been recently devoted to the determination of accurate channel models for the Power Line environment, both for the indoor and outdoor cases. The common denominator and limitation of the known and previously published models is the particular type of approach followed. In this paper is concerned with a power line channel modeling for the more fast and efficiently power line communication experiment. A capacitor load channel simulator is a essential equipment in the power line modem development for indoor network. We accomplished a channel modelling by the frequency response method about the total 224 capacitor load cases. On the basis of this measurement modeling it is here revealed that the PLC is a more deterministic media that commonly believed.

  • PDF

A Development of Coupled Simulation Tool to Evaluate Performance of Ventilation System (환기시스템의 성능평가를 위한 통합 시뮬레이션 Tool의 개발)

  • Cho Wang-Hee;Song Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.112-121
    • /
    • 2006
  • To evaluate the performance of ventilation system properly, the correlations among the ventilation rate, indoor air-quality and cooling/heating load should be analysed. In this study, simulation tool to analyze the performance of ventilation system was developed. The simulation tool is based on the TRNSYS and some modules to calculate concentration of pollutants with the operation of ventilation system and to decide the signal of ventilation system were newly developed in this study. And these modules coupled with building load and heating/cooling simulation modules. To verify the validity of developed simulation tool, comparison study between simulation and field study were accomplished. As results, the simulation tool developed in this study can be used to predict the performance of ventilation system with accuracy.