• Title/Summary/Keyword: Indoor light

Search Result 520, Processing Time 0.032 seconds

Research on Charging of Mobile Devices under indoor fluorescent light (실내조명을 이용한 모바일 기기의 충전에 관한 연구)

  • Yang, Seokwon;Kim, Kyung-oh;Kang, Sungmuk;Kim, Hoseong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1257-1258
    • /
    • 2015
  • 본 논문에서는 실내조명을 이용해 휴대폰 배터리 등의 충전기기를 효율적으로 충전하기 위한 방법을 연구하였다. 형광등 아래에서 태양전지의 저전압 출력을 에너지 하베스팅 용으로 개발된 초저전력 승압컨버터 칩으로 승압하여 저장커패시터를 충전하고 충전전압이 3.3 V가 되면 자동적으로 LED가 켜지고 방전하여 2.8 V가 되면 LED가 자동적으로 꺼지는 실험회로를 구성하여 실험하였다. 실험결과 형광등에 의한 350 lux 조도에서는 $60cm^2$ 크기의 태양전지를 이용하여 일반적인 스마트폰 대기소모전류(${\simeq}10mA$)의 5.7% 정도를 얻을 수 있었으며, 직사광선이 닿지 않는 실내 창가 1000 lux 조도에서는 12% 정도의 전류를 얻을 수 있었다.

  • PDF

A Study on the Environment-friendly Assessment Elements for Apartment Unit Plan (공동주택 단위주호의 환경친화성 평가요소에 관한 연구)

  • Cho, Sung-Heui;Park, Ji-Seon
    • KIEAE Journal
    • /
    • v.2 no.4
    • /
    • pp.11-20
    • /
    • 2002
  • The purpose of this study is to suggest environment-friendly assessment elements for the apartment unit plan. For this, the organizing environments of a unit are classified through literature review. Those were five categories of environment: environment of solar system, light, water, green and indoor air Quality. Then, the assessment elements for each categorized environment to evaluate the environment-friendly performance were grasped definitely by examining the applicability of architectural methods or equipment technology. It is expected to suggest not only an assessment tool for evaluation but also a checklist for design in order to develope environment-friendly apartment unit plans.

Experimental Evaluation of a Fiber Optic Concentrator for Daylighting (실내조명용 화이버 광학 집광기의 성능에 관한 실험적 평가)

  • Han, Hyun-Joo;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.27-34
    • /
    • 2008
  • A series of outdoor tests were conducted on a fiber optic solar concentrator system for its performance on daylighting. The system is comprised of four main components - a parabolic dish reflector, a convex mirror, a homogenizer tube and an optical fiber cable. Results show that the system could be successfully applied for indoor lighting if some improvements are made for light transmiting (optical) cables. A maximum concentration ratio of 90 was observed delivering the illuminance of 4,800 lux at a distance of 1.2m from the diffuser for the outdoor illuminance of 102,100 lux.

Study on Evaluation Analysis on Thermal Performance of Window Using A. S. Lab.(Artificial Solar Laboratory) (인공태양실험실(A. S. Lab.)을 활용한 창호의 열성능 평가에 관한 연구)

  • Kang, Ki-Nam;Lee, Keon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.812-819
    • /
    • 2010
  • Recently residential buildings are characterized with high-rise and high density. Under this circumstance, achieving comfortable and healthy indoor environment with minimized energy consumption becomes a very challenging engineering and societal issue. Along this the increased size and transparency of window as well as light surface caused by high stories lowers the heat shield efficiency of building. Since glass that constitutes building surface has low heat efficiency, it aggravates heat loss of all building considerably, thereby resulting in extreme heating load and cooling load in the country where temperature varies much in summer and winter. The research will check whether experiment can be effectively done by overcoming the limit of existing artificial solar laboratory constructed in the country and properly adjusting controlled variables with simplified function through construction of this experimental set.

Optimum Design of Dye-Sensitized Solar Module for Building-Integrated Photovoltaic Systems

  • Lee, Kyu-Seok;Kang, Man Gu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.859-865
    • /
    • 2017
  • This paper presents a method for determining the optimum active-area width (OAW) of solar cells in a module architecture. The current density-voltage curve of a reference cell with a narrow active-area width is used to reproduce the current density profile in the test cell whose active area width is to be optimized. We obtained self-consistent current density and electric potential profiles from iterative calculations of both properties, considering the distributed resistance of the contact layers. Further, we determined the OAW that yields the maximum efficiency by calculating efficiency as a function of the active-area width. The proposed method can be applied to the design of the active area of a dye-sensitized solar cell in Z-type series connection modules for indoor and building-integrated photovoltaic systems. Our calculations predicted that OAW increases as the sheet resistances of the contact layers and the intensity of light decrease.

Experimental Study on the Evaluation of Heat Transfer Characteristics of Buildings' External Walls -Focusing on the winter heat transfer characteristics of four experimental model buildings in accordance with the location of insulation- (건물(建物) 외벽(外壁)의 전열특성(傳熱特性) 평가(評價)에 관한 실측(實測) 연구(硏究) - 단열재 위치에 따른 실험용 건물의 겨울철 열특성 평가를 중심으로 -)

  • Sohn, J.Y.;Yoon, D.W.;Park, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.228-234
    • /
    • 1989
  • This paper describes the experimental thermal performance results of four experimental model buildings insulated differently. For the purpose of examining the thermal characteristics of external walls and indoor thermal conditions, four experimental model buildings are constructed as externally insulated, internally insulated, non-insulated &light-weight curtain wall types with different K-values and heat capacities, respectively.
    Through the measurements of temperatures at various points and solar insolation, the effects of insulation and heat capacities are evaluated, and the evaluated effects of each experimental model buildings are compared. Hence, the characteristics of temperature profiles, time-lag effects and decrement factors are discovered.

  • PDF

Fabrication of Optical Sheet for LED Lighting with Integrated Environment Monitoring Sensors (환경모니터링 센서가 집적된 LED 조명용 광학시트 제작)

  • Choi, Yong Joon;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we developed an optical sheet for LED lighting with integrated $CO_2$ gas and temperature sensor which can monitor at the indoor environment. The optical sheet for LED lighting is fabricated through PMMA(Polymethyl methacrylate) injection process using mold. This research enables to fabricate the reflective sheet, light-guide plate and the prism sheet in a optical sheet. The fabricated sheet demonstrates higher intensity of optical efficiency compared with single-sided sheets. The $CO_2$ sensor was fabricated using NDIR(NON-Dispersive Infrared) method and it has $0.0235mV/V{\cdot}PPM$ sensitivity. The temperature sensor was fabricated using RTD(Resistance temperature detector) method and it has $0.563{\Omega}/^{\circ}C $sensitivity.

Energy consumption by Spectral Power Distribution Of LED lighting (LED 조명의 분광 분포에 따른 건물에너지 소비)

  • Jung, Ho-Youn;Kim, Hyo-In;Kim, Gon;Yun, Geun-Young
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.101-106
    • /
    • 2012
  • Lighting energy accounts for approximately 20% of the electrical energy used worldwide. Thus, High efficiency Light emitting diode(LED)lighting is getting more popular as the next generation lighting replaced to traditional lighting fixtures. Also, LED lighting not only has a long lifetime but also can realize a variety visual environments through the wavelengh control. The lighting energy varies depending on the Spectral Power Distribution(SPD) even though the Illuminance level is same. Therefore, This study indicates that the difference of indoor energy consumption under the same illuminance level when Spectral Power Distribution(SPD) is different. As a result, Lighting energy consumption under red-color emphasizing SPD is about 10% lower than under blue-color emphasizing SPDs.

Effects of Different Shading Levels on the Growth of the Native Fern Polystichum lepidocaulon (차광정도에 따른 자생 더부살이고사리의 생육변화)

  • 방광자;주진희;한승원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.73-76
    • /
    • 2004
  • This study was conducted to investigate the growth responses of Polystichum lepidocaulon as influenced by 4 different shadings(Control, 50%, 70%, 90%). Under 50 or 70% shading, plant height, stipe length, blade length, blade width, and number of spores increased compared with the other shadings, except the number of frond and shoots. The plants grown under control was shown as smaller with more yellowish green leaf color, and under 90% shading the growth was slightly inferior to those under the 50 or 70% shading. Fresh weight and segment area of frond was better in increased shade levels, but they decreased in under 90% shading. Dry weight and segment thickness decreased as shading increased. Chlorophyll contents increased in proportion to lowered light intensity. Thus, 50 or 70% shading of Polystichum lepidocaulon seemed to maintain the highest growth.

An Implementation of UWB IR System for Long Distance and High-precision Localization (장거리 고정밀 측위를 위한 UWB IR 시스템 구현)

  • Kim, Ki-Yun;Kim, Gil-Gyeom;Kim, Tae-Kwon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.87-95
    • /
    • 2016
  • Recently, the interests of the precise localization are rapidly increasing, which are linked to IoT(Internet of Things) sensors. The precise localization in indoor environment can be utilized in navigation, security, anti-collision, and various location based services etc. However, conventional positioning sensors, such as PIR, ultrasonic, microwave etc. are vulnerable to weather or insensitive to direction of subject movement or low precision performance. In this paper we implement a UWB-IR localization system for long distance and high-precision localization, which is not affected by temperature, light and weather. The proposed system was divided and designed by H/W, Antenna, S/W parts, each of which was designed based on an accurate analysis and simulation. As a result, we can implemented and verified UWB IR system with precise localization performance.