• Title/Summary/Keyword: Indoor Wireless Channels

Search Result 34, Processing Time 0.022 seconds

Indoor Link Quality Comparison of IEEE 802.11a Channels in a Multi-radio Mesh Network Testbed

  • Bandaranayake, Asitha U;Pandit, Vaibhav;Agrawal, Dharma P.
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.1-20
    • /
    • 2012
  • The most important criterion for achieving the maximum performance in a wireless mesh network (WMN) is to limit the interference within the network. For this purpose, especially in a multi-radio network, the best option is to use non-overlapping channels among different radios within the same interference range. Previous works that have considered non-overlapping channels in IEEE 802.11a as the basis for performance optimization, have considered the link quality across all channels to be uniform. In this paper, we present a measurement-based study of link quality across all channels in an IEEE 802.11a-based indoor WMN test bed. Our results show that the generalized assumption of uniform performance across all channels does not hold good in practice for an indoor environment and signal quality depends on the geometry around the mesh routers.

Performance Analysis of UMB Signal Acquisition Algorithms According to Frame Interval and Bin Spacing in indoor Wireless Channels (실내 무선 환경에서 프레임 및 탐색 단위 구간에 따른 UWB 신호 동기 획득 알고리즘의 성능 분석)

  • Oh jong ok;Yang Suck chel;An Yo Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1623-1632
    • /
    • 2004
  • In this paper, we analyze the performance of linear search and bit reversal search algorithms based on the single-dwell serial search for rapid UWB (Ultra Wide Band) signal acquisition in typical indoor wireless channel environments. Simulation results according to bin spacing and frame interval in IEEE 802.15 Task Group 3a UWB indoor wireless channels show that bit reversal search algorithm achieves much smaller normalized mean acquisition time than linear search algorithm. In particular, it is found that the normalized mean acquisition time of the bit reversal search according to the range of searching termination interval closely matches the ideal case. In addition, we observe that the acquisition performance of bit reversal search algorithm becomes much better as bin spacing gets finer.

Performance Analysis of a Noncoherent OOK UWB System Based on Power Detection in Indoor Wireless Channels (실내 무선 채널에서 전력검출 기반 Noncoherent OOK UWB 시스템의 성능 분석)

  • Oh Jongok;Yang Suckchel;Shin Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1498-1509
    • /
    • 2004
  • In this paper, we evaluate the performance of a noncoherent OOK (On-Off Keying) UWB (Ultra Wide Band) system based on power detection with noise power calibration and noise power windowing for ubiquitous sensor network applications in typical indoor wireless channels. Utilizing noise power calibration and noise power windowing, the current noise information can be initially or adaptively provided to determine suitable detection threshold value for signal demodulation. Simulation results show that the noncoherent OOK UWB system using noise power calibration achieves good BER (Bit Error Rate) performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure. However, despite the serious loss of the data transmission rate, the performance improvement by noise power windowing is not so remarkable. furthermore, these performance results are similarly maintained in BEE 802.15 Task Group 3a UWB indoor channel model, and it is also revealed that the BER performance can be significantly improved by increasing the pulse repetition rate.

Closed-Loop Transmit Diversity Techniques for Small Wireless Terminals and Their Performance Assessment in a Flat Fading Channel

  • Mostafa, Raqibul;Pallat, Ramesh C.;Ringel, Uwe;Tikku, Ashok A.;Reed, Jeffrey H.
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.319-329
    • /
    • 2012
  • Closed-loop transmit diversity is considered an important technique for improving the link budget in the third generation and future wireless communication standards. This paper proposes several transmit diversity algorithms suitable for small wireless terminals and presents performance assessment in terms of average signal-to-noise ratio (SNR) and outage improvement, convergence, and complexity of operations. The algorithms presented herein are verified using data from measured indoor channels with variable antenna spacing and the results explained using measured radiation patterns for a two-element array. It is shown that for a two-element array, the best among the proposed techniques provides SNR improvement of about 3 dB in a tightly spaced array (inter-element spacing of 0.1 wavelength at 2 GHz) typical of small wireless devices. Additionally, these techniques are shown to perform significantly better than a single antenna device in an indoor channel considering realistic values of latency and propagation errors.

Performance Analysis of BPM UWB Multiple Access System Using PN Code Based Time Hopping Sequence in Indoor Wireless Channels (실내 무선 환경에서 PN 부호 기반 시간 도약 시퀀스를 이용하는 BPM UWB 다원 접속 시스템의 성능 분석)

  • 양석철;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.187-198
    • /
    • 2004
  • In this paper, we analyze the performance of BPM (Bi-Phase Modulation) UWB (Ultra Wide Band) multiple access system using PN (Pseudo Noise) code based time hopping sequence in indoor wireless channels. In particular, we compare BPM UWB multiple access system with PPM (Pulse Position Modulation) UWB multiple access system in terms of signalling and demodulation schemes. Moreover, we analytically evaluate the performance of these UWB systems by deriving the bit error rate expressions under the assumption that pulse energy and data transmission rate are identical for both systems. Simulation results in additive white Gaussian noise and realistic indoor multipath wireless channels show that the performance of BPM scheme is approximately 1 dB better than that of PPM scheme. However, the performance discrepancy becomes negligible as the number of users increases.

Secret Key Generation Using Reciprocity in Ultra-wideband Outdoor Wireless Channels

  • Huang, Jing Jing;Jiang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.524-539
    • /
    • 2014
  • To investigate schemes of secret key generation from Ultra-wideband (UWB) channel, we study a statistical characterization of UWB outdoor channel for a campus playground scenario based on extensive measurements. Moreover, an efficient secret key generation mechanism exploiting multipath relative delay is developed, and verification of this algorithm is conducted in UWB Line-of-sight (LOS) outdoor channels. For the first time, we compare key-mismatch probability of UWB indoor and outdoor environments. Simulation results demonstrate that the number of multipath proportionally affects key generation rate and key-mismatch probability. In comparison to the conventional method using received signal strength (RSS) as a common random source, our mechanism achieves better performance in terms of common secret bit generation. Simultaneously, security analysis indicates that the proposed scheme can still guarantee security even in the sparse outdoor physical environment free of many reflectors.

Fixed Indoor-BS Selection Based Self-Healing in Indoor Wireless Communication System (인도어 무선통신시스템에서 고정적 인도어기지국 선택을 통한 자가치유 알고리즘)

  • Lee, Howon;Lee, Kisong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1540-1546
    • /
    • 2014
  • In order to resolve coverage hole problems caused by indoor-BS (IBS) faults, we propose a new frame structure and practical algorithm based on optimization technique. Our main contributions can be described as follows: 1) a frame structure with healing channels for solving abnormal IBS faults; and 2) an efficient heuristic resource allocation algorithm with fixed IBS selection to reduce the complexity for the optimization problem. Through intensive simulations, we evaluate the performance excellency of our proposed algorithm with respect to average cell capacity and user fairness compared with conventional algorithms.

A Rapid Two-Step Acquisition Algorithm for UWB Systems in Indoor Wireless Channels (실내 무선 환경에서 UWB 시스템을 위한 고속 두 단계 동기 획득 알고리즘)

  • Yang Suchkchel;Oh Jongok;Kim Jeawoon;Shin Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.742-753
    • /
    • 2005
  • In this paper, we propose a rapid and reliable signal acquisition scheme for UWB (Ultra Wide Band) systems in typical indoor wireless channels. The proposed scheme is a two-step search with different thresholds and search window applied to a single correlator, where each step utilizes the single-dwell search with the bit reversal. Simulation results in IEEE 802. I5 Task Group .3a UWB indoor wireless channel show that the proposed scheme for the LHWB signals can achieve significant reduction of the required mean acquisition time as compared to the conventional single-dwell bit reversal search and double-dwell bit reversal search with more complex structure employing two correlators for various threshold levels. In addition, it is also observed that the proposed scheme can achieve much faster and reliable signal acquisition in noisy environments.

Indoor Localization in Wireless Sensor Network using LVQ (LVQ를 이용한 무선 센서 네트워크의 실내 위치 인식)

  • Park, Jin-Woo;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1295-1302
    • /
    • 2010
  • This paper proposed indoor location recognition method based on RSSI(received signal strength indication) using the LVQ network. In order to verify the effectiveness of the proposed method, we performed experiments, and then compared to the conventional triangularity measurement method. In the experiments, we set up the system to the laboratory, divided the 40 section, and installed 6 nodes as a reference node. We obtained the log-normal path loss model of wireless channels, RSSI converted into the distance. The distance values used as the input of LVQ. To learn the LVQ network, we set the target values as section indices. In the experiments, we determined the optimal number of subclass, and confirmed that the success rate of training phase was 96%, test phase was 91%.