• Title/Summary/Keyword: Indoor Positioning

Search Result 498, Processing Time 0.022 seconds

Positioning-error Analysis of Vibration Sensors for Prognostics and Health Management in Rotating System (갠트리 크레인 호이스트의 건전성 평가를 위한 진동 모사시스템 구축과 데이터 통계 분석)

  • Jang, Jaewon;Han, Zhiqiang;Zhang, Haiyang;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.346-353
    • /
    • 2022
  • Recently, studies on the integrity of rotating machines, such as gantry cranes, which are used in the shipbuilding industry, have been actively conducted. Gantry cranes are driven at relatively low revolutions per minute (RPM), are frequently operated and stopped, and are impacted by external environmental factors, such as shock and noise in the measurement data. The purpose of this study was to construct a replica of a gantry crane hoist used in indoor shipbuilding and analyze the acquired data for errors caused by the shift in operating conditions (RPM) and the change in the position of the data acquisition sensor. Consequently, we observed that the error caused by differences in sensor positions did not occur significantly under low operating conditions but occurred significantly under relatively high operating conditions. Thus, we determined that both the operating condition and position of the acquisition sensor affected the data acquired by the rotary machine.

Design of O2O service platform using BLE beacon (BLE 비콘을 활용한 O2O 서비스 플랫폼의 설계)

  • Yoon, Dong-Eon;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1457-1462
    • /
    • 2021
  • Untact order payment has become a new normal since the COVID-19. BLE beacon is a technology that supports low-power wireless communication within 70 meters without Bluetooth pairing and is specialized for indoor positioning. Therefore, it is suitable for building and providing O2O services beyond B2C and B2B services. However, beacons have a lower utilization rate because they have fewer platforms than wifi that support long-distance wireless communication. Therefore, this paper aims to provide more convenient non-face-to-face related services than before by designing and proposing an O2O service platform using BLE beacons. When scanning beacons, not only does it receive advertising data that beacons have, but it also ensures that the actual distance between the user's terminal and beacons is accurately calculated. Through accurate location, the O2O service platform will be able to provide users with store information, such as coupons and discounts, museum exhibits, and traffic information at the right time.

Localization Algorithms for Mobile Robots with Presence of Data Missing in a Wireless Communication Environment (무선통신 환경에서 데이터 손실 시 모바일 로봇의 측위 알고리즘)

  • Sin Kim;Sung Shin;Sung Hyun You
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.601-608
    • /
    • 2023
  • Mobile robots are widely used in industries because mobile robots perform tasks in various environments. In order to carry out tasks, determining the precise location of the robot in real-time is important due to the need for path generation and obstacle detection. In particular, when mobile robots autonomously navigate in indoor environments and carry out assigned tasks within pre-determined areas, highly precise positioning performance is required. However, mobile robots frequently experience data missing in wireless communication environments. The robots need to rely on predictive techniques to autonomously determine the mobile robot positions and continue performing mobile robot tasks. In this paper, we propose an extended Kalman filter-based algorithm to enhance the accuracy of mobile robot localization and address the issue of data missing. Trilateration algorithm relies on measurements taken at that moment, resulting in inaccurate localization performance. In contrast, the proposed algorithm uses residual values of predicted measurements in data missing environments, making precise mobile robot position estimation. We conducted simulations in terms of data missing to verify the superior performance of the proposed algorithm.

Beacon-based Internet of Things(IoT) analysis of the Case Study (비콘 기반의 사물인터넷(IoT) 활용 사례 분석)

  • Hwang, Hyun-seo;Park, Jin-tae;Yun, Jun-soo;Phyo, Gyung-soo;Moon, Il-young;Lee, Jong-sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.977-980
    • /
    • 2015
  • Beacons have been noted in the core of the recent things Internet. It is also the technology is spreading most rapidly among the things Internet-related communication technologies. Beacon is a data communications technology that provides information that is customized to know the user's location. Using the BLE technology, to grasp the position of such people and goods. In addition to the non-contact method, since it is possible to communicate within the maximum 70m, it has attracted the interest than the NFC. Beacon, guidance for the current coupon, you can use as an advertising platform, such as the provision of product information, it has also been used in the indoor positioning service. Therefore, in this paper, we introduce about whether Case Study beacon is utilized how in the Internet of Things, were analyzed. Beacon exit the smart phone, the date to be used in conjunction with a wearable device, such as Google glasses and smart watch was not far away. Future it is expected or beacons are used everywhere to be expanded.

  • PDF

Localization Using Extended Kalman Filter based on Chirp Spread Spectrum Ranging (확장 Kalman 필터를 적용한 첩 신호 대역확산 거리 측정 기반의 위치추정시스템)

  • Bae, Byoung-Chul;Nam, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.45-54
    • /
    • 2012
  • Location-based services with GPS positioning technology as a key technology, but recognizing the current location through satellite communication is not possible in an indoor location-aware technology, low-power short-range communication is primarily made of the study. Especially, as Chirp Spread Spectrum(CSS) based location-aware approach for low-power physical layer IEEE802.15.4a is selected as a standard, Ranging distance estimation techniques and data transfer speed enhancements have been more developed. It is known that the distance measured by CSS ranging has quite a lot of noise as well as its bias. However, the noise problem can be adjusted by modeling the non-zero mean noise value by a scaling factor which corresponds to the change of magnitude of a measured distance vector. In this paper, we propose a localization system using the CSS signal to measure distance for a mobile node taken a measurement of the exact coordinates. By applying the extended kalman filter and least mean squares method, the localization system is faster, more stable. Finally, we evaluate the reliability and accuracy of the proposed algorithm's performance by the experiment for the realization of localization system.

3D Reconstruction of Pipe-type Underground Facility Based on Stereo Images and Reference Data (스테레오 영상과 기준데이터를 활용한 관로형 지하시설물 3차원 형상 복원)

  • Cheon, Jangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1515-1526
    • /
    • 2022
  • Image-based 3D reconstruction is to restore the shape and color of real-world objects, and image sensors mounted on mobile platforms are used for positioning and mapping purposes in indoor and outdoor environments. Due to the increase in accidents in underground space, the location accuracy problem of underground spatial information has been raised. Image-based location estimation studies have been conducted with the advantage of being able to determine the 3D location and simultaneously identify internal damage from image data acquired from the inside of pipeline-type underground facilities. In this study, we studied 3D reconstruction based on the images acquired inside the pipe-type underground facility and reference data. An unmanned mobile system equipped with a stereo camera was used to acquire data and image data within a pipe-type underground facility where reference data were placed at the entrance and exit. Using the acquired image and reference data, the pipe-type underground facility is reconstructed to a geo-referenced 3D shape. The accuracy of the 3D reconstruction result was verified by location and length. It was confirmed that the location was determined with an accuracy of 20 to 60 cm and the length was estimated with an accuracy of about 20 cm. Using the image-based 3D reconstruction method, the position and line-shape of the pipe-type underground facility will be effectively updated.

2D Backtracking Method of Ultrasonic Signal (초음파 신호의 2차원 역추적 방법에 관한 연구)

  • Kyu-Joung Lee;Choong Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • In this paper, 2-dimensional backtracking method for ultrasonic signals. Ultrasonic sensors are a common technology used in industrial fields as many studies have been conducted on distance measurement and indoor location tracking using transmission and reception devices in pairs. A method for tracking a signal of an arbitrary ultrasonic transmission device on a 2D plane using only a receiver of an ultrasonic signal is proposed. In order to track the ultrasonic signal, the receiver receives the signal by making at least three. The three receivers may calculate a direction and a distance using a time difference in which the ultrasound reception sound is reached. The existing method of tracking signal sources using ultrasonic waves has a problem of time synchronization of devices because the transceivers must be paired or installed independently for each sensor. In order to solve this problem, the distance of the ultrasonic receiver is minimized, and it is configured as one device. The sensor installed as one device may be processed by one operator, thereby solving the time synchronization problem. To increase time difference accuracy, high-speed 32-bit timers with high time resolution can be used to quickly calculate and track distances and directions.

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.