• Title/Summary/Keyword: Indoor Contamination Levels

Search Result 9, Processing Time 0.025 seconds

Exposure Assessment of Biological Agents in Indoor Environments (실내환경에서 생물학적 인자에 대한 노출평가)

  • Park, Ju-Hyeong
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • The Institute of Medicine of the National Academies of Science in the United States concluded in its 2004 report that excessive indoor dampness is a public health hazard and that its prevention should be a public health goal. Water damage in buildings, such as leaks from roofs, walls, or windows, may increase indoor moisture levels. Excessive dampness may promote microbial proliferation in indoor environments, increase occupants' exposure to microbial agents, and eventually produce adverse health effects in building occupants. Epidemiological studies to demonstrate the causal association between exposure to indoor microbial agents and health effects require reliable exposure assessment tools. In this review, I discuss various sampling and analytical methods to assess human exposure to biological agents in indoor environments, their strengths and weaknesses, and recent trends in research and practice in the USA.

Heavy Metal Contamination of Indoor, Outdoor and Playground in Middle and High School in the Jeonju-City, Korea (전주시내 중고등학교 실내.외 환경의 중금속 오염에 대한 연구)

  • 조규성
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.495-503
    • /
    • 2000
  • Dust samples were collected from 17 middle and high schools in the Jeonju-city. heavy metal concentrations were determined for the dry-deposited dusts from indoor and outdoor of classroom and playground of each sampling site. Concentrations of Cd, Cr, Cu, Ni, Pb and Zn in indoor\`s dusts were highly concentrated. Also heavy metal concentrations in outdoor\`s dusts were similar to that of indoor\`s dusts. Concentrations of Cd, Cu, and Zn in the dusts were much higher than the world average contents in soil and environmental orientation value. These levels are similar to those of the dust samples at middle schools located at Kangseo-gu and Yangchon-gu , Seoul. Playground dusts in 6 schools exhibited the enhanced heavy metal pollution with a pollution index (by Kloke) greater than 1.0. Most indoor and outdoor dusts exhibited the enhanced heavy metal pollution with a pollution index(by Cullbard et al.) greater than 1.0.

  • PDF

A Survey of House Dust Mite Allergen Contamination in House (일부 주택에서 집먼지 진드기 알러젠 조사)

  • Sohn, Jong-Ryeul;Yoon, Seung-Uk;Kwon, Bo-Ypun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.719-723
    • /
    • 2006
  • House dust mite was the most important cause of allergic asthma and rhinitis. More than 70% of Korean children and about 50% of adult with respiratory allergy were sensitive to house dust mite. This experiment was indoor environment in house and house dust mite existence inquiry. From 23rd December 2005 to 28th February 2006, dust samples were collected from the bedclothes by a vacuum cleaner and air sampler And the levels of Der f1 and Der p1 were determined by ELISA((Enzyme-Linked Immunosorbent Assay). The results were as follows : 1 The dust mites allergy contaminations of bedclothes in house were higher than international standards(2000 ng/g). 2. In type of dust mite, the Korean house the almost have the D. farinae other than D. pteronyeeinus of mite. 3. The Der f1 and Der p1 levels per gram of dust from the bedclothes were 2074.99 ng on average, but they did not exist in air. The concentrations of house dust mite were significantly high in the bedclothes. This results suggest that the bedclothes have enough concentrations of dust mites to develop the sensitization. The control of indoor environment should be emphasized to prevent the sensitization by the repeated exposure to dust mite.

Assessment of Bioaerosols in Public Restrooms (화장실 공기 중 미생물 분포 조사연구)

  • Kim, Jong-Gyu;Kim, A-Hyeok;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.304-312
    • /
    • 2014
  • Objectives: This study was performed to examine bioaerosols in indoor air in public restrooms, as well as to assess the effects of air temperature and relative humidity on bioaerosol levels. Methods: A cross-sectional survey was performed in ten male and ten female restrooms. An air sampler (Anderson type) was used for sampling total suspended bacteria (TSB), Gram-negative bacteria (GNB), Gram-positive bacteria (GPB), opportunistic bacteria (OP), Staphylococcus spp., and total suspended fungi (TSF). Results: The levels of TSB were $10-10^2CFU/m^3$ and TSF $10-10^2CFU/m^3$, respectively. The GNB level was $0-10CFU/m^3$, and GPB and OP levels were $10-10^2CFU/m^3$. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) were detected in 90% of the restrooms. The GPB level was higher in the female restrooms than in the male restrooms (p < 0.05). TSB, GNB, and TSF showed higher levels in restrooms in buildings over 30 years old (p < 0.01). The main effect of air temperature or relative humidity and interaction effect of the two factors on the TSB level were significant (p < 0.05), while the effect of relative humidity on the TSF level was significant (p < 0.001). Conclusions: These results indicate that there is a wide variation in the bioaerosol levels among different restrooms. The observed differences in bioaerosol levels reflect different building histories. The effects of air temperature and/or relative humidity reveal that bioaerosol levels may vary according to season or time of day. Future research is needed to further characterize the relation between the bioaerosol levels and surface contamination in restrooms.

A Study on the Operational Strategy for Hybrid Ventilation System in Apartment unit focused on Indoor Air Quality (실내공기질을 고려한 공동주택의 하이브리드 환기 시스템의 운영에 관한 연구)

  • Lee, Yong-Jun;Leigh, Seung-Bok;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • This dissertation identifies and investigates the possible control modes of hybrid ventilation system in applying to general apartments. It evaluates range of hybrid ventilation control modes in terms of indoor air quality, thermal comfort, and energy consumption in a living room and a kitchen of the $1000m^2$ apartment. The TRNSYS simulation program was used for evaluating the following four ventilation types : A ventilation mode relying on only infiltration for supplying air, A natural ventilation mode considering with weather condition, A hybrid ventilation (natural + mechanical ventilation) mode allowing minimum ventilation with no heat exchange, and a hybrid ventilation mode with heat exchange. This study shows the following results. As temperature being controlled by heating cooling equipments, there is without significant difference in thermal performance among ventilation types. Regarding Indoor Air quality, Indoor air contamination level of the hybrid ventilation case consistently keep the lower levels. The hybrid ventilation modes consume more energy by a 49% as compared to the A ventilation mode relying on only infiltration for supplying air. It is caused by the continuous ventilation for keeping good indoor air quality; the increase of energy consumption can be attributable to the increase of the heating energy. Therefore, the heat exchange between indoor and outdoor air is required during heating season in severe weather conditions. During the cooling seasons, Introducing natural ventilation can achieve energy saving by 40 ~ 45%. Thus, it can be an effective strategies for energy saving. Based on these results, a hybrid ventilation system can be suggested as an effective ventilation strategy for archiving high level of indoor air quality, thermal comfort, and energy consumption.

Contamination Characteristics of Heavy Metals in Indoor, Outdoor and Playground of Schools in the Gochang-Gun, Chonbuk Province of South Korea (전북 고창지역 학교 실내외 환경의 중금속 오염 특성)

  • Kim, Yong-Hwan;Chung, Duk-Ho;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Dust samples were collected from 10 middle and high schools in the Gochang-Gun, Korea. Heavy metal concentrations were determined for the dry-deposited dusts from indoor and outdoor of classroom and playground of each sampling site. Concentrations of Cd, Cu, Pb and Zn in indoor's dusts were highly concentrated. Also concentrations of Cu, Ni, Pb and Zn in outdoor's dusts were highly concentrated. Concentrations of Cd, Cu and Zn in the dusts were much higher than the world average contents in soil and environmental orientation value. These levels are similar to those of the dust samples at middle schools and high schools located in Jeonju-city, Korea. Compared with concentrations of heavy metals in soils and dusts in Korea, the environment of indoor and outdoor of classroom is highly concentrated except for Cu, Zn. The concentrations of playground is less than that of residential dust and main road dust and playground in Jeonju-city. Playground dusts in 1 school exhibited the enhanced heavy metal pollution with a pollution index (Kloke, 1979) greater than 1.0, but indoor and outdoor dusts in 7 schools exhibited the enhanced heavy metal pollution with a pollution index (by Kloke) yester than 1.0.

Assesment of Indoor Air Quality within Public Transport Vehicles operating in specified locations throughout Seoul (서울 일부 지역 교통수단의 실내 공기질 평가)

  • Sohn Jong-Ryeul;Choi Dal-Woong;Choi Jung-Sook;Woo Wan-Gi
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.12-20
    • /
    • 2006
  • This paper was conducted concerning the degree of indoor air quality in public transport vehicles such as taxicabs, buses and subway trains, as sampled through the active participation of drivers and passengers in Seoul between 13th August 2005 and 2nd November 2005. The results were summarized as follows: 1. Among the measured substances especially respirable particulate matters ($PM_{10}$), total bacteria counts (TBC) and carbon dioxide ($CO_2$) exceeded the standard level of $150{\mu}g/m^3,\;800CFU/m^3$ and 1000ppm. 2. The concentration of carbon dioxide ($CO_2$) in taxi recorded 2491ppm, which is more than the standard amount of 1000ppm. This level was comparatively higher than all other public transportation methods. Total bacteria counts (TBC) in bus and subway recorded $1082CFU/m^3\;and\;1856CFU/m^3$, respectively. 3. The drivers who regularly work long hours showed the higher concern about contamination of the air inside the public transport vehicles and they considered it to be worse than the air outside. In contrast, the general public showed less concern about the air quality inside the public transport vehicles. However, they too acknowledged that the quality of the air inside the public transport vehicles was poor. In regards to the degree of indoor air quality in the public transport vehicles, a counterplan must be implemented urgently to effectively combat the excessive levels of $PM_{10}$, microorganism and $CO_2$. We need to gather more conclusive evidence pertaining to other possible contaminants and influencing factors.

Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method (DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가)

  • Hwang, Eun-Seol;Seo, Sung Chul;Lee, Ju-Yeong;Ryu, Jung-min;Kwon, Myung-Hee;Chung, Hyen-Mi;Cho, Yong-Min;Lee, Jung-Sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.

Particulate Matter Removal of Indoor Plants, Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. according to Light Intensity (광량에 따른 실내식물 디펜바키아와 스파티필럼의 미세먼지 제거능)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.62-68
    • /
    • 2018
  • This study investigated the effect of light intensity on the removal of particulate matter by Dieffenbachia amoena 'Marianne' and Spathiphyllum spp.. An acrylic chamber ($600{\times}800{\times}1200mm$, $L{\times}W{\times}H$) modeled as an indoor space and a green bio-filter ($495{\times}495{\times}1000mm$, $L{\times}W{\times}H$) as an air purification device were made of acrylic. The removal of particulate matter PM10 and PM1, the photosynthetic rate, stomatal conductance, and number of stomata of Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. were measured according to three different levels of light intensity (0, 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$). Regarding the length of time taken for PM10 to reach $1{\mu}g$, the Dieffenbachia amoena 'Marianne' showed a significant difference according to the presence or absence of light, and there was no significant difference shown between light intensity of 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. As for the Spathiphyllum spp., there was no significant difference between 0 and $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$, while a significant difference was shown at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. After 90 minutes, the PM1, PM10, and $CO_2$ residuals of the Spathiphyllum spp. were lowest at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. The remaining amount of PM1 and PM10 was lower with the Spathiphyllum spp. than with the Dieffenbachia amoena 'Marianne', even at $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. With both plants, the higher the light intensity, the higher the photosynthetic rate, while the stomatal conductance did not show any significant difference. Spathiphyllum spp. showed a higher photosynthetic rate and stomatal conductance and a greater number of stomata than Dieffenbachia amoena 'Marianne', and stomata were observed in both the front and back sides of the leaves. The air purification effect of Spathiphyllum spp. is considered to be better than Dieffenbachia amoena 'Marianne' at the same light intensity due to such plant characteristics. Therefore, in order to select effective indoor plants for the removal of particulate contamination in an indoor space, the characteristics of plants such as the photosynthetic rate and the number and arrangement of stomata according to indoor light intensity should be considered.