• Title/Summary/Keyword: Indoor Comfort

Search Result 353, Processing Time 0.025 seconds

A Measurement and Evaluation of Indoor Thermal Conditions in Spring of a Coastal Passenger Ship - 590-Passenger Ro-Pax Type (590인승 Ro-Pax형(型) 연안여객선의 선실 내 봄철 온열환경 측정평가)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, Eun-Su;Do, Yo-Han;Choi, Yun-Seok;Cho, Jung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1170-1177
    • /
    • 2008
  • The purpose of this study is to measure and analyze the indoor thermal conditions in the spring of a korean coastal passenger ship which is 590-passenger Ro-Pax type built at 1997. Especially this study has focussed on the relations between the diffuser open ratio, which can be controlled by 12 steps, and the comfort. Followings are the results of this study. (1) The supply air volume to cabins are maximum 4.3 and 2 times more than design quantity when the diffusers in cabins are open 100% and 50%, respectively. (2) Regardless of diffuser open ratio, the supply air maintains constantly high temperature and below 10% of relative humidity through the experimental days. (3) All the cabins are not satisfied with the ASHRAE comfort criterion at the condition of 100% and 50% of diffuser open ratio, because of high temperature and low relative humidity. (4) At a low diffuser open ratio, number of cabins which satisfy the ASHRAE comfort criterion are increased. (5) Humidifying and dehumidifying, and hvac control system of each cabin must be reviewed and studied at the view of passengers to service more comfort environments.

Study on Thermal Comfort and Indoor Air Quality in the Classroom with System Air-conditioner and Ventilation System for Cooling Loads (시스템에어컨과 환기시스템 설치 강의실에서 냉방시 열쾌적성 및 실내공기질 연구)

  • Noh Kwang-Chul;Jang Jae-Soo;Oh Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.57-66
    • /
    • 2006
  • The experimental and the numerical study was performed on the comparison of thermal comfort(TC) and indoor air quality(IAQ) in the lecture room for cooling loads when the operating conditions are changed. PMV value and $CO_2$ concentration of the lecture room were measured and compared with the numerical results. The numerical results showed a good agreement with the experimental one and then the numerical tool was used to analyze thermal comfort and IAQ for a couple of operating conditions. As a result it was found that the increment of the discharge angle of system air-conditioner makes TC uniformity worse, but rarely affects IAQ. Also TC and IAQ were hardly affected by the variation of the discharge airflow. Finally it turned out that TC is merely affected by the increment of the ventilation airflow, but the average $CO_2$ concentration can be satisfied with Japanese IAQ standards of classrooms when the ventilation airflow is more than $800m^3/h$ in this study.

Thermal Diary - 24 hours' Exposed Temperature and Thermal Comfort in Urban Life, Summer (여름철 도시의 일상생활에서 폭로되는 환경온도와 온냉감 평가)

  • 이민정;전정윤
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.333-337
    • /
    • 2002
  • All the outdoor and indoor spaces are connected with each other. The human being moves toward those spaces and experiences temperature fluctuation between the natural and artificial temperature. We conducted an experiment which subjects are the college students wearing the data logger in urban life, and measured 24 hours' exposed temperature and thermal comfort in summer. Results were as follows. 1. Most subjects get weather information(84.6%). Fashion(46.2%) and weather (30.8%) are the reasons to select clothes. They spend their time in indoor environment for 84.92% hours of a day and have an air-conditioner(61.5%) in their houses. 2. Exposed temperature fluctuation were from 33.8$^{\circ}C$ to 15.6$^{\circ}C$. The median value of experienced temperature were 26-27$^{\circ}C$ and average temperature was 26.3$^{\circ}C$. Subjects experienced cold shock of 3.96 times in a day and 67.21% of all evaluated thermal comfort in the range of -1 and 1 by ASHRAE 7 Category Scales. Artificial environment which connected with outside let people experienced temperature fluctuation in wide range.

  • PDF

Post Occupancy Evaluation for Office Building with An Underfloor Air Distribution System (바닥공조 시스템이 적용된 사무공간의 거주후 성능평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Jung, Hae-Kwon;Choi, Sun-Kyu;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.78-85
    • /
    • 2011
  • In this study, an underfloor air distribution(UFAD) system installed on the S. office building was evaluated for its indoor environmental quality performance. Field measurement and survey were conducted for the overall POE(Post Occupied Evaluation). PMV(including temperature, humidity, air velocity and globe temperature) and several environmental components were measured while thermal comfort, thermal sensation, acoustical environment and others. were investigated through survey. Except for the direct upper part of the air supply diffuser on the floor, the indoor velocity was less than 0.25m/s, which has been suggested by ASHRAES tandard 55 as the limit for thermal comfort. MRT of the perimeter zone of the room showed a higher value than that in the interior because of the introduced solar radiation through the building envelope. PMV was generally maintained in the range of thermal comfort (from -0.5 to +0.5), though it weighted to the warm side. It was reported to have 61% positive response on thermal comfort and 55% on neutral thermal sensation. The results of each survey item showed some gender-based differences. Specifically, female respondents had higher degree of dissatisfaction with indoor air cleanness and acoustical privacy. The working surface showed more than 400 lux and the equivalent noise level showed less than 50 dB(A). In conclusion, the results of the measurement and survey showed good agreement. Indoor environmental quality of the subject office room where the UFAD system was installed showed an overall excellent performance.

Characteristics of thermal comfort for artificial environment experiment in summer (하계 인공환경실험에서의 온열쾌적특성)

  • 박종일;김경훈;홍희기;민병일;김창주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.368-377
    • /
    • 1998
  • The purpose of this study was to examine theory about indoor thermal comfort-environment as well as to determine thermal sensation and physiological responses for men in summer indoor environment, under various air temperature and relative humidity, with male university students. Subjective Evaluation, Heart Rate(Electrocardiogram), Electroencephalogram(EEG) were examined. We found that comfort of people was achieved at SE $T^{*}$ 24.7$^{\circ}C$, -0.82<PMV<0.93, subject's clothing(0.41c1o)and the difference of skin temperature was found at the calf area as air temperature changes. At low SE $T^{*}$, heart rate was decreased and at high SE $T^{*}$, heart rate was increased but there was no change EEG(keeping $\alpha$-wave).wave).

  • PDF

A Study on Thermal Comfort Comparison between Tencel and Polyester Indoor Cothing

  • Chung, Sham-Ho;Yoo, Eun-Ok;Hwang, Soo-Kyung;Lee, Han-Seop
    • International Journal of Costume and Fashion
    • /
    • v.9 no.1
    • /
    • pp.34-43
    • /
    • 2009
  • This study compared the thermal comfort of indoor clothing from Tencel material that is getting higher in demand due to being eco-friendly with superior wettability, with that from Polyester material that despite being most widely used for indoor clothing, rapidly discharges body sweat due to low wettability. The experiments were performed in the two manners, objective evaluation under the conditions of an artificial climate chamber and subjective evaluation of wearing the given clothes at home followed by filling in the questionnaire. Subjects were 8 healthy elderly women in their 60's who spend majority of their time at home rather than in social activities, and comparison was made on skin temperature and humidity inside clothing at exercise and relaxation states under early summer environment. Based on these results, wearing Tencel material clothing maintained cooler temperatures under warm environment rather than when wearing Polyester material clothing, thus enabling activities under more comfortable state. Regarding humidity inside clothing, parts with twofold clothing did not show difference between Tencel and Polyester, but the onefold arm showed lower when wearing Tencel. With this results, Tencel is regarded as more comfortable and nicer than Polyester.

Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the ToP Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Closed - (공동주택의 하절기 개구부 밀폐 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석)

  • Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.45-53
    • /
    • 2004
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample houses. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained the brief results as follows. Indoor air temperature at the top floor unit is $1.2\sim2.2^{\circ}C$ higher than that of middle floor unit. The evaluation of the indoor thermal comfort index at each sample rooms reveals notable thermal differences between the two units. Top floor units need more cooling load during the summertime compared to middle floor units. Therefore, solutions to reduce solar Heat gain at top floor units to be considered.

Analysis of Ventilating Seat Comfort Temperature for Improving the Thermal Comfort inside Vehicles (자동차 실내 열쾌적성 개선을 위한 통풍시트의 쾌적온도 분석)

  • In, Chung-Kyo;Kwak, Seung-Hyun;Kim, Chang-Hoon;Kim, Kyu-Beom;Jo, Hyung-Seok;Seo, Sang-hyeok;Myung, Tae-Sik;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • As the number of automobile registrations increases and luxury expectations grow, consumers are increasingly interested in indoor environment of vehicles. Therefore, manufacturers have an increasing interest in improving the indoor comfort as well as automobile performance. Research on indoor automobile comfort can help manufacturers increase driver satisfaction and reduce driver stress and discomfort, thereby reducing the risk of traffic accidents. Using electroencephalogram (EEG) measurements, we investigated the change in comfort and comfortable temperature according to the ventilating seat temperature change for both men and women. Results showed that the sensation of comfort was statistically significantly higher at 25℃ than at 28℃. Secondly, there was no statistically significant difference in temperature-based comfort feeling between male and female subjects. In the future, if the correlation between the driver's comfort feeling and the change in ventilating seat temperature is analyzed, it is possible to reduce traffic accidents caused by human error and reduce the electric energy consumption of the automobile.

Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the Top Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Opened - (공동주택의 하절기 자연환기 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석)

  • Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature, globe temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample units on the condition that all the openings of the units are opened. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained three brief results as follows. Indoor air temperature difference between the two sample units shifts a day. Indoor air temperature at the top floor unit is $0{\sim}1.8^{\circ}C$ higher than that of the middle floor unit from 12:00 p.m. to 12:00 a.m. and $0{\sim}2.8^{\circ}C$ lower from 12:00 a.m. to 12:00 p.m. The evaluation of the indoor thermal comfort index and the globe temperature shows similar results as the indoor air temperature measuring. Results of this experiment verified the actual existence of indoor air temperature difference between the top floor unit and the middle one and this difference comes from the heat storage of the roof.

A Study on the Improvement of Comfortable Living Environment by Using real-time Sensors

  • KIM, Chang-Mo;KIM, Ik-Soo;SHIN, Deok-Young;LEE, Hee-Sun;KWON, Seung-Mi;SHIN, Jin-Ho;SHIN, YongSeung
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • Purpose: This study was conducted to identify indoor air quality in various living spaces using sensors that can measure noise, vibration, fine dust, and odor in real time and to propose optimal indoor air quality maintenance management using Internet of Things(IoT). Research design, data and methodology: Using real-time sensors to monitor physical factors and environmental air pollutants that affect the comfort of the residential environment, Noise, Vibration, Atmospheric Pressure, Blue Light, Formaldehyde, Hydrogen Sulfide, Illumination, Temperature, Ozone, PM10, Aldehyde, Amine, LVOCs and TVOCs were measured. It were measured every 1 seconds from 4 offices and 4 stores on a small scale from November 2018 to January 2019. Results: The difference between illuminance and blue light for each measuring point was found to depend on lighting time, and the ratio of blue light in total illumination was 0.358 ~ 0.393. Formaldehyde and hydrogen sulphide were found to be higher than those that temporarily attract people in an indoor office space that is constantly active, requiring office air ventilation. The noise was found to be 50dB higher than the office WHO recommendation noise level of 35 ~ 40dB. The most important factors for indoor environmental quality were temperature> humidity> illumination> blue light in turn. Conclusions: Various factors that determine the comfort of indoor living space can be measured with real-time sensors. Further, it is judged that the use of IoT can help maintain indoor air quality comfortably.