• Title/Summary/Keyword: Indoor Channel

Search Result 258, Processing Time 0.026 seconds

A Simulator Development of Generating Polarization Waves for The Indoor Wireless Communications (옥내 무선통신을 위한 편파발생 시뮬레이터 개발)

  • 이주현;하덕호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.872-878
    • /
    • 2003
  • In this paper, we developed a simulator which can generate the polarization waves for the indoor wireless communications based on three dimensional ray tracing technique and verified the simulation results comparing with the measured data in indoor wireless propagation environments. Using the developed simulator, we analyzed the channel characteristic and polarization diversity reception characteristic for the vertical, horizontal and circularly polarized waves. From the analysis results, in the case of using circularly polarized wave it can be clearly seen that the multipath fading is markedly reduced compared to the vertical and horizontal polarized waves due to the reception characteristic of removing the odd time reflected waves.

Indoor RSSI Characterization using Statistical Methods in Wireless Sensor Network (무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정)

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.457-461
    • /
    • 2007
  • In many applications, received signal strength indicator is used for location tracking and sensor nodes localization. For location finding, the distances between sensor nodes can be estimated by converting received signal's power into distance using path loss prediction model. Many researches have done the analysis of power-distance relationship for radio channel characterization. In indoor environment, the general conclusion is the non-linear variation of RSSI values as distance varied linearly. This has been one of the difficulties for indoor localization. This paper presents works on indoor RSSI characterization based on statistical methods to find the overall trend of RSSI variation at different places and times within the same room From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. This two factors are directly indicated by the two main parameters of path loss prediction model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. Using this relationship, the characterization for location estimation can be more efficient and accurate.

  • PDF

A Time-of-arrival Estimation Technique for Ultrawide Band Indoor Wireless Localization System (초광대역 방식의 실내 무선 위치인식 시스템에 적합한 도착시간 추정 알고리즘)

  • Lee, Yong-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.814-821
    • /
    • 2009
  • In an ultrawide band (UWB) indoor wireless localization, time of arrival (TOA) parameter estimation techniques have some difficulties in acquiring a reasonable TOA estimate because of the clustered multipath components overlapping or random time intervals mainly due to non line-of-sight (NLOS) environment. In order to solve that problem and achieve an excellent UWB indoor wireless localization, we propose a UWB signal model and a robust TOA parameter estimation technique that has little effect on the clustered problems unlike the conventional technique. Through simulation studies, the validity of the proposed model and the TOA estimation technique are examined. The performance of estimation error is also analyzed.

Evaluation of Interference Alignment for MIMO-IC based on IEEE 802.11n (IEEE 802.11n 기반 MIMO-IC의 간섭정렬 성능평가)

  • Bae, Insan;Yun, Heesuk;Kim, Jaemoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, The existing interference alignment algorithms were analyzed in Rayleigh fading channel environment. The interference alignment techniques are divided to two parts. First thing is Iterative-method, another is Linear-method. Iterative method needs local channel info, but it has the constraint of iteration. On the other hand Linear-method must have global channel info, but has free of iteration and better performance. This paper evaluates the performance of interference alignment algorithms in Rayleigh fading channel of outdoor environment and WLAN channel based on IEEE 802.11n of indoor environment.

Performance Improvement of IEEE 802.11a WLAN System by Improved Channel Estimation Scheme using Long/Short Training Symbol (Long/Short 훈련심볼을 이용하는 개선된 채널추정기법에 의한 IEEE 802.11a 무선 LAN 시스템의 성능 개선)

  • Kwak, Jae-Min;Jung, Hae-Won;Cho, Sung-Joon;Lee, Hyeong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.203-210
    • /
    • 2002
  • In this paper, the BER performance of IEEE 802.11a OFDM WLAN system is obtained by simulation and it is shown that the proposed modified channel estimation algorithm improves the channel estimation performance of the system. The wireless channel used in channel simulation includes AWGN and delay spread channel implemented by TDL model. At first, the performance of OFDM WLAN system according to data rate and coding rate defined in standard is evaluated in AWGN channel. Then, imperfect channel estimation in indoor wireless channel is considered. After the performance of conventional channel estimation scheme using only two long training symbols is evaluated, and that of proposed modified channel estimation scheme using additional 8 short training symbol is compared with it. From the simulation results, it is shown that modified channel estimation scheme provides reduced channel estimation error and improves the channel estimation performance due to noise averaging effect with the same preamble format as defined in specification.

  • PDF

Analysis of Indoor Channel Modeling in Millimeter-Wave Band (밀리미터파 대역의 실내 채널 모델링 분석)

  • Lee, Won-Hui;Pyo, Seongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.53-58
    • /
    • 2016
  • A ray tracing method to analyze the propagation channel characteristics for a millimeter-wave indoor wireless communication system is presented. Reflected rays from planar as well as rough surfaces are included. Transmitted rays though a thin dielectric slab are considered. Maps representing received power levels and RMS delay spread from a transmitter in a rectangular room are shown. The received power levels in the empty room for bottom's roughness factors of 0 and 0.13 are represented. The simulation results are well consistent with the calculation of Friis equation with reflection coefficient. Any size of furniture the shape of plane form can be positioned anywhere in the room.

Performance of Multi-rate Optical Wireless PPM-CDMA System over an Indoor Non-directed Diffuse Channel (실내 비방향성 분산채널에서 다중전송률 광무선 PPM-CDMA 시스템의 성능 분석)

  • 황성수;이재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.943-950
    • /
    • 2000
  • In this paper, an asynchronous multi-rate optical wireless pulse position modulation-code division multiple access (PPM-CDMA) is proposed for an indoor non-directed diffuse channel. As a signature sequence for CDMA, an optical orthogonal code (OOC) is used and an interference cancellation scheme is applied to improve the bit error rate. It is known that the optical PPM-CDMA has advantages due to its power efficiency. Moreover, it provides multi-rate services by varying the modulation level with fixed pulse duration. In the proposed multi-rate PPM-CDMA system with fixed pulse duration, chip rate and sampling time do not change for each transmission rate and this simplifies overall system structure.

  • PDF

An Average-Weighted Angle of Arrival Parameter Estimation Technique for Wireless Positioning based on IEEE 802.15.3a (IEEE 802.15.3a 기반의 무선 위치인식을 위한 평균가중 신호 도착방향 매개변수 추정 기법)

  • Baang, Sung-Keun;Lee, Yong-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.472-478
    • /
    • 2010
  • In the environment of wireless communication system of IEEE 802.15.3a UWB standard, the angle of arrival(AOA) estimation technique for the indoor wireless positioning algorithms, based on the AOA parameter estimation which fits well for the wireless communication channel and shows high estimation accuracy, is proposed. After the UWB signal model, based on the IEEE 802.1.3a standard, is constructed, the average weighted MUSIC technique is proposed, which shows better estimation accuracy than those of conventional estimation technique. Through the simulation studies, the environment of the indoor wireless positioning system including the IEEE 802.15.3a channel is configured and we demonstrate better estimation results by the proposed AOA estimation technique than those from the conventional method.