• Title/Summary/Keyword: Indoor Air Temperature

Search Result 667, Processing Time 0.034 seconds

The Actual State of TVOC and the Responses of Sick House Syndrome in Newly Built University Dormitory (대학교 신축 기숙사의 휘발성유기화합물 농도 및 새집증후군 반응)

  • Choi, Yoon-Jung;Oh, Ye-Seul;Jang, Yoon-Jeong;Kim, Jung-Jae
    • Journal of the Korean housing association
    • /
    • v.20 no.6
    • /
    • pp.135-143
    • /
    • 2009
  • The purposes of this study were to determine the actual state of the indoor air quality by measuring TVOC Concentration and surveying residents' responses in a newly built university dormitory and to analyze the influencing factors of IAQ. Field measurements on the concentrations of TVOC and HCHO were carried out three times at 4 week intervals in 3 rooms of a dormitory. A questionnaire survey was conducted on residents which inquired into the resident's lifestyle, their consciousness of IAQ, and the responses to SHS. According to the results, TVOC concentrations were 0.14~18.5 ppm and HCHO concentrations were 0.23~6.89 ppm during the 3 months following the completion of construction, showing a serious state in which standard levels are exceeded, though these levels seemed to decrease over time. The factors influencing the differences in the levels of TVOC and HCHO were the ventilation volume including infiltration, the heating temperature, relative humidity, or the use of living matter that include chemical ingredients. However, the residents rarely felt the symptoms of SHS and were not conscious of the importance of ventilation.

E/V Shaft Cooling Method as a Stack Effect Countermeasure in Tall Buildings

  • Lee, Joonghoon;Song, Doosam;Jeong, Eunyoung
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The higher the building height and the larger the temperature difference between the outdoor and indoor space, the more remarkable is the draft driven by the stack effect in high-rise buildings. Moreover, the stack effect can bring about the deterioration of habitability and the degradation of the performance of the indoor control system in high-rise buildings. In this study, as a measure to attenuate the stack effect, the E/V shaft cooling method was proposed and its performance was compared with the conventional stack effect control method for strengthening the air-tightness of the building using a numerical simulation method. The total decreasing ratios on the stack effect in a building were compared, and the probabilities of the secondary problems were analyzed. The results show that the E/V shaft cooling is very effective to decrease the stack effect in a high-rise building in terms of the reduction performance and application. Moreover, this method does not cause secondary problems, such as stack pressure transition to other walls, unlike the conventional stack effect mitigation method.

Performance of an Duct-type HVAC System for Conservation of Ancient Tombs (고분보존용 덕트형 공조시스템의 운전 특성)

  • Jun, Yong-Du;Lee, Kum-Bae;Park, Jin-Yang;Ko, Seok-Bo;Jun, Hee-Ho;Youn, Young-Muk
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.29-34
    • /
    • 2006
  • Although the importance of good conservation of historic sites including ancient royal tombs is well aware, still not much attention has been paid for the facilities and systems to preserve those historic sites, which includes precious artifacts as wall paints and carved works, etc. Even the level of general understanding about the environment of the underground space of tombs is not satisfactory. In Korea, researchers have recently begun addressing the importance of maintaining proper environment for underground space as of ancient tombs and are making efforts to develop suitable HVAC(heating, ventilating and air-conditioning) systems for them. In this study, an HVAC system for a tomb ($D{\times}W{\times}H=1.3m{\times}3.0m{\times}1.2m$) was installed to maintain suitable indoor conditions for conservation of tomb. The temperature and humidity inside the tomb were measured to represent the performance of the installed duct-type HVAC system. Vibration levels due to the installed an HVAC system are alive investigated experimentally. According to the measured data, the level of vibration inside the present model tomb with the duct-type unit showed significantly lower values than the case with the indoor unit inside.

  • PDF

Changes in Growth Characteristics of Seven Foliage Plants Grown in an Indoor Bio-Wall System Depending on Irrigation Cycle

  • Han, Cheolgu;Shim, Ie-Sung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.179-189
    • /
    • 2020
  • In order to increase the indoor air purification effect of plants, plants need to be placed on 5-10% of indoor spaces. To increase the density and utilization of plants in indoor spaces, studies on bio-wall, a vertical green wall system, have been recently conducted. The purpose of this study was to investigate the growth characteristics of 7 indoor plants introduced to the system and their rooting zones at different irrigation cycles. This study was conducted to investigate a proper irrigation cycle for the continuous maintenance of bio-wall systems. The conditions of their growth environment were maintained as follows: light intensity, 20-50 μmol·m-2·s-1 PPFD; and temperature, 20 - 25℃. For fertilization, Hyponex diluted with water at the ratio of 1:1,000 was supplied to plants. Irrigation was treated at intervals of 1, 3, 5, and 7 days for 1 hour at a time. As a result, there was no significant difference in the growth of plants between different irrigation cycles. Dieffenbachia 'Marianne' showed a significant decrease in the number of leaves at the irrigation cycle of 7 days. In addition, the chlorophyll content was relatively low at the irrigation cycle of 7 days. In terms of the color of leaves, a decrease in L value and b value and an increase in a value were observed, resulting in changes in brightness and color. Ardisia pusilla 'Variegata' showed a slightly higher photosynthetic activity and stomatal conductance when it was watered every day and once per 5 days, while Epipremnum aureum showed a relatively higher photosynthetic activity and stomatal conductance at the irrigation cycle of 3 days. In the case of root activity, it was found that the longer irrigation cycle, the higher root activity compared to daily irrigation. The development of roots of Peperomia clusiifolia was promoted by watering at long intervals. However, in the case of Aglaonema 'Siam-Aurora', the total number of roots decreased at the interval of 7 days. In conclusion, a proper irrigation cycle for the sustainable maintenance of vertical bio-wall systems seems to be 3 days.

Analysis on the Thermal Comfort Aspect of a Locally-Cooled Room in Warm and Humid Environments : PPD-Based Evaluation of Human Responses (중온 고습 환경조건에서 부분적으로 냉방되는 실내의 열쾌적성에 대한 분석 : 인체반응에 대한 PPD 기준의 평가)

  • Kim, Bong-Hun;Seo, Seung-Rok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.41-59
    • /
    • 1998
  • Thermal comfort aspect of a locally-cooled target space in warm and humid environments(typically in the rainy summer season) was studied in view of PPD index. First. theoretical analyses were conducted to examine the effect of the governing parameters(such as air temperature, relative humidity and air velocity, etc.) using a computer model. Secondly, experimental investigations were also performed in a climatic room designed to simulate corresponding thermal conditions of outdoor environments. During the tests, temporal variation of PPD was recorded as functions of climatic variables(outdoor and indoor temperatures, relative humidity and air velocity) for the given human factors(metabolic heat generation and clothing). From both theoretical and experimental investigations, air temperature and air velocity were found to be the most dominant parameters affecting PPD of the target space. Results were summarized as: 1. Relative humidity of the locally-cooled target space tends to approach that of outdoor's as the space is subjected to an ON-OFF mode of cooling, since moisture potential of the two rooms reaches an equalized state as a result of moisture diffusion. 2. It was recognized that changes in relative humidity did not show any significance in view of thermal comfort as was reported in the previous studies, while variations of both temperature and air velocity caused relatively large changes in the degree of thermal comfort. 3. In-door environment should be evaluated in terms of PPD instead of relative humidity commonly recognized as an important climatic variable particularly in warm and humid environments.

  • PDF

The Analysis for Thermal Comfort Evaluation during long time operating Air Conditioner (에어컨 장시간 운전시 온열쾌적감 평가에 관한 연구)

  • Kim, Dong-Gyu;Park, Jong-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.59-64
    • /
    • 2007
  • Using air conditioner has been increased in home or office buildings in summer. Also various problems related to air conditioning such as disease induction happened by using air conditioner excessively and operating long. Active operation control is needed for occupant's health when air conditioner operates long. We should think ahead to acquire thermal comfort of occupants which represents psychological and physiological reaction for this operation. Research has been progressed to observe activity of autonomic nervous system by trying to quantitate change of thermal comfort. In this study, questions of the subject and change of body's autonomic nervous system were chosen to evaluate thermal comfort during operation of air conditioner for a long time. Electrocardiogram and questions of the subject which is the progress of changing TSV and CSV by occupants indoor were measured when room air conditioner is operated for a long time, and an air-conditioned adaptability of human body was evaluated by acquiring the change rate of autonomic nervous system through analyzing HRV. As a result of the evaluation, change rate of body's autonomic nervous system corresponded to votes of the subject's question generally, but was distinguished from analysis result of warm-cold sensation in a low temperature area.

Comparative Analysis on Heat Radiation of LED Luminaires (LED 등기구의 발열량 비교분석)

  • Kim, Dong-Geon;Kim, Il-Kwon;Yu, Seon-Young;Kwon, Wook;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1530-1535
    • /
    • 2011
  • Heat radiation of LED luminaires has risen a problem when applied indoor. LEDs can save energy with higher efficacy than other light sources. However, their heat radiation may increase power consumption for air-conditioning. Therefore, this paper carried out a comparative analysis on the amount of heat radiation for MR16, E26 bulb, and down-light which will be replaced to LED luminaires. Heat amount of LED-MR16 and LED-downlight was 48% and 87.5% lower than that of conventional lamps, halogen MR16 and E26 CFL, respectively. Consequently, the heat amount and indoor temperature were proportional to the power consumption of luminaire. Therefore, the use of LED luminaire can reduce the amount of heat radiation as well as power consumption.

  • PDF

Comparison of Thermal Environment in Livingroom between Korea and Japan (바닥 난방을 사용하는 주택내 거실 온열 환경의 한일비교)

  • Lee, Min-Jung;Chun, Chung-Yoon
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2003.11a
    • /
    • pp.47-51
    • /
    • 2003
  • In this paper, we compared the thermal environment in the livingroom with panel heating system of Korea and Japan. The houses are two apartments and two single houses in Korea, and two apartments in Japan. The outdoor temperatures, indoor air temperatures, surface temperatures on floor and humidities were measured. The survey to the residents and recording of operation were also collected. The results were as follows.1. The Korean houses are warmer and drier(approximately 23$^{\circ}$C, 38%) than those of Japan.(approximately 20$^{\circ}$C, 57%). And indoor temperaures of Korean apartment are stabie. 2.The residents in Japan put on and off the switches of the heating system frequently.

  • PDF

An Experimental Study on the Performance of a Heat Pump with a Refrigerant Heating Device (냉매가열식 열펌프시스템의 성능특성에 관한 실험적 연구)

  • Kim, Sang-Hyuk;Park, Youn-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.707-713
    • /
    • 2006
  • To improve heating performance of the heat pump in winter season, refrigerant heating device was applied to conventional heat pump. The refrigerant heating device operates at the heating capacity does not enough to the heating load requirement of the conditioning space. When the discharge air temperature of the indoor heat exchanger goes down to below $40^{\circ}C$ which is criterion for comfort of the occupants in the conditioning space, the system also starts. The refrigerant heating system has new concept of auxiliary heating device for heat pump in winter. In this study, the system performance was analyzed through experiments and parametric study was conducted to improve the COP and control strategies.

A Study on the Performance Improvement of Plastic Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 플라스틱 열교환기의 성능 향상에 관한 연구)

  • Kim, Jin-Hyuck;Yoo, Seong-Yeon;Han, Kyu-Hyun;Kang, Hyung-Chul;Yun, Hong-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.328-333
    • /
    • 2008
  • In order to control indoor air quality and save energy, it is needed to install a suitable heat exchanger for heat recovery. A plastic heat exchanger have many advantages and can recover $50{\sim}80%$ of the temperature difference between supply and exhaust air. The purpose of this research is to evaluate the performance of plastic heat exchanger with different shapes. Pressure drop and heat transfer characteristics of plastic heat exchangers are investigated for various velocities.

  • PDF