Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2009.06a
/
pp.284-284
/
2009
We have fabricated semiconductor nanocrystals using phase separation on flexible substrates for future application in QD-LEDs. The phase separation between the CdSe semiconductor nanocrystals and TPD organic underlayer can occur during the solvent drying, and the CdSe may rise towards the surface of the coated films, which is arranged into close packed array called self-assembly process. In this work, the polyethylene naphthalate (PEN) films of $200{\mu}m$ thickness was used as a flexible substrate, which was coated with indium tin oxide(ITO) as a transparent electrode of <$15{\Omega}/cm^2$. A number of solvents such as chloroform, toluene, and hexane was used and their coating properties were investigated using the spin coating process. The dispersion of both QD and TPD was rather poor in toluene and hexane and resulted in rougher surface and some aggregates. Meanwhile, the surface roughness of templates can be a very critical issue in the fabrication of QD-LED devices. Some experiments was performed to reduce the ~4nm surface roughness of the PEN films and It can be decreased to the minimum of ~0.7nm. Also discussed are the optical properties of semiconductor nanocrystals used in this phase separation and possible large area and continuous coating process for future application.
The structural and optoelectronic properties of polycrystalline CdS films up to several microns in thickness, fabricated by three different methods, are compared to one another for the purpose of preparing CdTe/CdS solar cells. All films were deposited on an indium tin oxide on glass substrate. The three methods are: 1) alternated spraying of cation and anion solution at room temperature; 2) spray pyrolysis with substrate temperature up to $500^{\circ}C$; 3) chemical bath deposition (CBD). Deposited films were thermally treated in various ways. All films showed a well-developed wurtzite structure. Films grown by the alternated-spray method and the chemical bath method consist of randomly-oriented crystallites with dimensions <0.5 microns. Annealing at $400^{\circ}C$ increases the crystallite size slightly. Films which were grown by pyrolysis at substrate temperatures from $400^{\circ}C\;to\;500^{\cir\c}C$ were oriented in the <002> direction. For growth by pyrolysis at $500^{\circ}C$, the surface is rough on a lateral scale of 0.1 to 0.3 microns. The optical band gap and defect states are investigated by optical absorption, photoluminescene, Raman, and photothermal deflection spectroscopies.
Proceedings of the Materials Research Society of Korea Conference
/
2011.05a
/
pp.65-65
/
2011
Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.
New organic light-emitting diodes with structure of indium-tin-oxide[ITO]/N,N'-diphenyl-N, N'-bis-[4-(phenyl-m-tolvlamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-poly-aminophenyl) cyclohexane[TAPC]/bis(10-hydroxy-benzo(h)quinolinato)beryllium[Bebq2]/Bebq2:iridium(III)bis(2-phenylquinoline-N,C2')acetylacetonate[(pq)2Ir(acac)]/ET-137[electron transport material from SFC Co]/LiF/Al using the selective doping of 5%-(pq)2Ir(acac) in a single Bebq2 host in the two wavelength (green, orange) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of Bebq2, two kinds of devices with the doped emitter thicknesses of 20${\AA}$ and 40${\AA}$ in the Bebq2:(pq)2Ir(acac) were fabricated. The device with a 20${\AA}$-thick doped emitter is referred to as "D-1" and the device with a 4${\AA}$-thick doped emitter is referred to as "D-2". Under an applied voltage of 9V, the luminance of D-1 and D-2 were 7780 $cd/m^2$ and 6620 $cd/m^2$, respectively. The electroluminescent spectrum of each fabricated device showed peak emissions at the same two wavelengths: 508 nm and 596 nm. However, the relative intensity of 596 nm to 508 nm at those wavelengths was higher in the D-2 than in the D-1. The D-1 and D-2 devices showed maximum current efficiencies of 5.2 cd/A and 6.0 cd/A, and color coordinates of (0.31, 0.50) and (0.37, 0.48) on the Commission Internationale de I'Eclairage[CIE] chart, respectively.
Self assembled monolayers (SAM) are generally used at the anode/organic interface to enhance the carrier injection in organic light emitting devices, which improves the electroluminescence performance of organic devices. This paper reports the use of SAM of 1-decanethiol (H-S(CH2)9CH3) at the cathode/organic interface to enhance the electron injection process for organic light emitting devices. Aluminum (Al), tris-(8-hydroxyquionoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(3 -methylphenyl)-1,1'- diphenyl-4,4'-diamine (TPD) and indium-tin-oxide (ITO) were used as bottom cathode, an emitting layer (EML), a hole-transporting layer (HTL) and a top anode, respectively. The results of the capacitancevoltage (C-V), current density -voltage (J-V) and brightness-voltage (B-V), luminance and quantum efficiency measurements show a considerable improvement of the device performance. The dipole moment associated with the SAM layer decreases the electron schottky barrier between the Al and the organic interface, which enhances the electron injection into the organic layer from Al cathode and a considerable improvement of the device performance is observed. The turn-on voltage of the fabricated device with SAM layer was reduced by 6V, the brightness of the device was increased by 5 times and the external quantum efficiency is increased by 0.051%.
The layered BaTiO3 thin films with a high dielectric constant of polycrystalline BaTiO3 and a good in-sulating property of amorphous BaTiO3 were prepared. And their electrical properties were characterized with stacking methods. The BaTiO3 thin films were prepared by rf-magnetron sputtering technique using a ceramic target on Indium-doped Tin oxide coated glasses. A new stacking method resulted in higher dielec-tric constant, capacitance per unit area, and breakdown strength than those prepared by a conventional stacking method; the new method continuously decrease the substrate temperature after initial deposition of a polycrystalline BaTiO3 layer. The observed high dielectric constant could be explained only by a mul-tilayered amorphous/microcrystalline/polycrystalline structure, which was confirmed indirectly by AES depth profile.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.11a
/
pp.353-353
/
2008
Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.
Kim, Gi-Yeong;Min, Jeong-Hong;Jang, So-Yeong;Lee, Jun-Yeop;Park, Mun-Do;Kim, Seung-Hwan;Jeon, Seong-Ran;Song, Yeong-Ho;Lee, Dong-Seon
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.433.1-433.1
/
2014
The research of graphene, a monolayer of carbon atoms with honeycomb lattice structure, has explosively increased after appeared in 2004. As a result, its high transmittance, mobility, thermal conductivity, and outstanding mechanical and chemical stability have been proved. Especially, many researches were executed about the field of transparent electrode highlighting material of substituting the indium tin oxide (ITO). In addition, qualitative and quantitative improvements have been achieved due to many synthesis methods were discovered. Among them, mostly used method is chemical vapour deposition of graphene grown on copper or nickel. The transmittance, mobility, sheet resistance, and other many properties are completely changed according to these two types of synthesis method of graphene. In this research, considering the difference of characteristics as the synthesis method of graphene, what types of graphene should be used and how to use it were studied. The stacked graphene harvested on copper and multi-layer graphene harvested on nickel were compared and analyzed, as a result, the transmittance of 90% and the sheet resistance of $70{\Omega}{\square}$ was showed even though stacked graphene layers were 4 layers. The reason that could bring these results is lowered sheet resistance due to stacked monolayer graphenes. Moreover, light output power of the three stacked graphene spreading layer shows the highest value, but light-emitting diode with multi-layer graphene died out from 12mA due to also its high sheet resistance. Therefore, we need to clarify about what types of graphene and how to use the graphene in use.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.380-380
/
2012
유기물 나노 복합체는 고집적/저전력/플렉서블 특성을 가지는 초고효율 비휘발성 메모리 소자를 제작하는데 많은 이점을 가지고 있어, 차세대 비휘발성 메모리 소자에 사용되는 소재로 매우 각광받고 있다. 그 중, WORM 특성을 가지는 메모리 소자는 1회 쓰기 후 수많은 읽기가 가능하기 때문에, 그 효율성이 매우 뛰어나 이목을 끌고 있다. 유기물 나노 복합체 중에서, poly(3-hexylthiophene) (P3HT)는 화학적/전기적 안정성과 전하의 이동도 특성이 뛰어나기 때문에 전자 소자에 응용하려는 연구가 활발히 진행되고 있다. 본 연구에서는 $P_3HT$ 고분자를 polymethylmethacrylate(PMMA) 고분자에 분산시킴으로써, 상태를 기억하는 저장 매체로 사용하였다. 본 연구의 소자를 제작하기 위하여 약 9 : 1 비율을 가지는 PMMA 와 $P_3HT$를 용매인 클로로벤젠에 녹여 용액을 준비하였다. Indium Tin Oxide (ITO)가 코팅된 glass를 화학적 처리를 통해 청결하게 만든 후, PMMA와 $P_3HT$가 용해되어 있는 용액을 스핀 코팅 방법으로 박막을 형성하였다. PMMA 속에 $P_3HT$가 분산되어 있는 활성층 위에 상부 전극으로 Al을 열 증착 방식을 통하여 형성하였다. 제작된 WORM 특성을 갖는 유기물 나노 복합체 플렉서블 소자의 메모리 효과에 대한 분석을 위하여, -5V에서 5V까지 전압을 인가하여 전류-전압 특성을 측정하였다. 초기 낮은 전도도 (OFF 상태, 10-10A에서 10-4A)를 유지하다가, 쓰기 전압을 1회 가해준 후부터는 높은 전도도 (ON 상태, 10-5A 에서 10-2A)를 유지하는 특성을 관측하였다. 또한 WORM 특성을 갖는 메모리 소자로써의 능력을 보여주기 위하여, 1회 쓰기 전압 후 읽기 전압인 1V를 인가하여 높은 전도도 상태에 대한 상태 유지 능력을 측정하였고, 전하 수송 메커니즘을 규명하기 위하여 피팅 모델을 통해 설명하였다.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.368-368
/
2012
무기물 나노입자를 포함하는 유기물/무기물 나노복합체는 플렉시블 전자 소자에 적용이 가능하기 때문에 차세대 비휘발성 메모리 소자에 대한 응용연구가 활발히 진행되고 있다. 본 논문에서는 $CuInS_2$ (CIS)/ZnS 코어-쉘 나노 입자를 포함한 poly(N-vinylcarbazole) (PVK) 고분자 박막을 기억 매체로 사용하는 유기 쌍안정성 소자(organic bistable devices, OBD) 메모리 소자를 제작하고 전기적 성질에 대하여 관찰하고 전하 수송 메카니즘에 대하여 규명하였다. 화학적 방법으로 형성한 CIS/ZnS 코어-쉘 나노 입자와 PVK를 toluene 용매에 녹인 후 초음파 교반기를 사용하여 나노 복합 소재를 형성하였다. 하부 전극으로 indium-tin-oxide (ITO)가 증착되어 있는 유리 기판 위에 나노 복합 소재를 스핀코팅 방법으로 도포한 후 열을 가해 잔류 용매를 제거하였다. CIS/ZnS 코어-쉘 나노 입자가 분산되어 있는 PVK 나노 복합 소재로 구성된 박막위에 상부 전극으로 Al을 열증착하여 메모리 소자를 제작하였다. 전류-전압 (I-V) 측정 결과에서 저전압에서는 전도도가 낮은 OFF 상태를 유지하다 어느 특정 양의 전압에서 전도도가 갑자기 증가하여 높은 전도도의 ON 상태로 전이되는 쌍안정성이 관찰되었다. 전류의 ON/OFF 비율은 약 $10^3$이며 역방향 바이어스를 가해주었을 때 특정 음의 전압에서 전도도가 ON 상태에서 OFF 상태로 전환되는 전형적인 OBD 메모리 소자의 I-V 특성을 나타났다. 메모리 전하 수송 메커니즘 분석 결과 쓰기 과정은 thermionic emission (TE), space-charge-limited-current (SCLS) 모델과 지우기 과정은 Fowler-Nordheim (FN) 터널링 모델로 설명이 되었다. 제작된 소자에 대해 기억 시간 측정 결과는 ON과 OFF 상태의 전류가 장시간에도 변화가 거의 없는 소자의 안정성을 보여주었다. 이 실험 결과는 CIS/ZnS 코어-쉘 나노 입자가 분산되어 있는 PVK 나노 복합 소재를 사용하여 안정성을 가진 OBD 메모리 소자를 제작할 수 있음을 보여주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.