• 제목/요약/키워드: Indirect vector control

검색결과 122건 처리시간 0.026초

벡터제어와 스칼라제어에 의한 유도전동기의 속도제어성능 비교 (A Comparative Analysis of the Indirect Field-Oriented Control with a Scalar Method for IM Speed Control)

  • 김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.91-98
    • /
    • 1995
  • To control speed or torque of induction motors, scalar control method that regulates the value of stator current had been used conventionally. But, vector control method which contrls the direction and the value of stator current at the same time has been introduced lately and employed widely. This paper describes comparative analyses of above two methods by computer simulation. As a result of the simulation, both methods showed good responses for high speed, but, vector control method characterized much better performance for low speed and sinusoidal input.

  • PDF

적응 백스테핑과 MRAS를 이용한 유도전동기 제어 (Induction Motor Control Using Adaptive Backstepping and MRAS)

  • 이선영;박기광;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.77-78
    • /
    • 2008
  • This paper presents to control speed of induction motors with uncertainties. We use an adaptive backstepping controller with fuzzy neural networks(FNNs) and model reference adaptive system(MRAS) at Indirect vector control method. The adaptive backstepping controller using FNNs can control speed of induction motors even we have a minimum of information. And this controller can be used to approximate most of uncertainties which are derived from unknown motor parameters, load torque such as disturbances. MRAS estimates to rotor resistance and also can find optimal flux to minimize power losses of Induction motor. Indirect vector PI current controller is used to keep rotor flux constant without measuring or estimating the rotor flux. Simulation and experiment results are verified the effectiveness of this proposed approach.

  • PDF

확장된 루엔버거 관측기를 이용한 유도전동기 회전자 자속 추정 (Rotor Flux Estimation of an Induction Motor using the Extended Luenberger Observer)

  • 조금배;최연옥;정삼용
    • 전력전자학회논문지
    • /
    • 제6권2호
    • /
    • pp.115-124
    • /
    • 2001
  • 본 논문에서는 유도전동기 회전자 자속 기준제어를 위하여 비선형 관측기인 확장된 루엔버거 관측기 원리를 적용한 새로운 회전자 자속관측기를 제안하였다. 확장된 루엔버거 관측기는 확장된 칼만 필터와 유사하게 동특성 오차의 선형화 기법을 따트고 있으나 통계학적 속성의 노이즈 공분산을 고려하지 않는 결정론적 관측기로서 비선형 상태관측기 설계시 요구되는 좌표변환 및 선형화 파정에서 비선형 편미분 방정식의 직접적인 해를 펼요로 하지 않아 구현이 비교적 용이하다. 제안된 회전자 자속관측기는 직교좌표의 고정자 전류, 회전자 자속, 속도 및 부하 토크로 구성된 6차 미분방정식으로부터 유도되었으며 축약된 형태의 이득행렬을 갖는다. 시뮬레이션 및 실험은 파라 미터중 회전자 저항 값이 변동된 상황을 가정하여 수행하였으며, 시뮬레이션 결과 제안된 관측기를 이용한 자속 추정시 극점 재배치를 통하여 동특성 오차의 수렴성을 제어할 수 있으며, 부하 설험결과 제안된 관측기를 적용하는 경우에는 슬립적분형 간접벡터제어에 비해 보다 정확한 벡터제어가 가능함이 확인되었다.

  • PDF

간접 벡터 제어에 근거한 선형유도전동기의 제어 알고리즘 (A Control Algorithm of Linear Induction Motor based on Indirect Vector Control)

  • 이재현;전미림;목형수;이진우;김상훈;김철호;정은성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.302-309
    • /
    • 2008
  • This paper presents a vector control of Linear Induction Motor base on a slip frequency control. And a linear induction motor modeling included the end effect using circuit and equation method is also proposed. We demonstrated through simulation the improvements achieved by the proposed scheme.

  • PDF

2상 유도전동기 구동 2상 인버터의 벡터 제어 (Vector Control for Two-Phase Inverter-Fed Two-Phase Induction Motors)

  • 장도현;조영훈
    • 전력전자학회논문지
    • /
    • 제12권4호
    • /
    • pp.310-317
    • /
    • 2007
  • 본 논문에서는 평형 2상유도전동기에 대한 시스템 방정식을 유도하고 해석하였으며, 동기좌표계에서 평형 2상유도전동기의 속도제어 특성을 분석하였다. 3상 교류 전동기의 속도제어에 범용적으로 적용하는 벡터제어이론을 "2상 인버터 구동 2상 유도전동기 시스템"에 수정하여 적용하였으며, 이 때 2상 유도전동기 시스템은 수정된 간접 벡터제어이론에 의해 속도 제어하였다. 2상 유도기의 벡터제어의 특성과 근사함을 보여주기 위해 제안 시스템을 시뮬레이션하였다. 최종적으로 실험을 통해서 제안 시스템이 벡터제어에 확실히 적응하는 것을 확인하였다.

비선형 시스템제어를 위한 복합적응 신경회로망 (Composite adaptive neural network controller for nonlinear systems)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

유도전동기 회전자 저항 보상을 위한 벡터제어 (Vector Control for the Rotor Resistance Compensation of Induction Motor)

  • 박현철;이수원;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

Implementation of Space Vector Two-Arm Modulation for Independent Motor Control Drive Fed by a Five-Leg Inverter

  • Talib, Md Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Abu Hasim, Ahmad Shukri
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.115-124
    • /
    • 2014
  • This paper presents the implementation of two-arm modulation (TAM) technique for the independent control of a two-induction motor drive fed by a five-leg inverter (FLI). A carrier-based space vector pulse width modulation technique for TAM is proposed to generate switching signals for FLI. Two independent three-phase space vector modulators are utilized to control two motors. The motor drive system applies two separate indirect field-oriented control methods. The stationary voltage outputs from the vector control are synthesized in the three-phase space vector modulator to generate switching signals for FLI. The performance of the independent control of the motors and the voltage utilization factor are likewise analyzed. Simulation and experimental results verify the effectiveness of the proposed method for the independent control of the two-motor drive system. The proposed technique is successfully validated by dSPACE DS1103 experimental work.

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Nguyen, Dinh-Tuyen;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.448-457
    • /
    • 2012
  • This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.

공간벡터 PWM을 이용한 유도전동기의 속도제어에 관한 연구 (A Study on Speed Control of Induction Motor using Space Vector PWM)

  • 김영곤;최정환;이승환;김성남;이훈구;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.476-478
    • /
    • 1996
  • This paper is on speed control of induction motor using space vector PWM. Indirect vector control which controls independantly flux and torque current component in order to drive induction motor, is applied for driving motor. Voltage sourced inverter with space vector PWM is used to generate the practically perfect sinusoidal flux density in induction motor. The appropriateness of speed control is proven by appling IP(Integral-proportional) controller which is known to have a good speed response and still to have less overshoot than the now used PI(Proportional-Integral) controller.

  • PDF