• Title/Summary/Keyword: Indirect smelting

Search Result 3, Processing Time 0.018 seconds

A Study of the Iron Production Process through the Analysis of Slags Excavated from Bupyeong-ri, Inje, Korea (인제 부평리유적 출토 슬래그 분석을 통한 제철 과정 연구)

  • Bae, Chae Rin;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.143-151
    • /
    • 2020
  • In the present article, we have analyzed five slags excavated from the Unified Silla period iron smelting site, i.e., location 4-2 of the Inje Bupyeong-ri site, to investigate the iron smelting process. The total Fe content of the slag excavated from the Inje Bupyeong-ri site ranged between 3.65 and 23.78 wt%, lower than that of typical slag, and deoxidation agent of the slag ranged between 65.92 and 88.96 wt%, higher than that of typical slag. These results suggest that the recovery rate of iron was significantly high. Furthermore, cristobalite was detected in most of the samples, and the furnace temperature, estimated by substituting the analyzed data into the FAS and FCS state diagrams, was confirmed as 1,600℃ or more. These results suggest that the operation at the Inje Bupyeong-ri site was performed at a temperature capable of producing cast iron by completely melting the carbon-containing iron. Observation of the microstructure showed that the iron fragments excavated at the Inje Bupyeong-ri site were identified as white cast iron. Steadite from the ternary iron-carbon-phosphorus system was observed in the white cast iron structure. These results show that indirect smelting was performed when the iron smelting by-products were produced. Based on the analysis results, it was confirmed that the Inje Bupyeong-ri site was the indirect smelting site in the Unified Silla period.

Study on the Iron Production Process through the Analysis of By-Products Found at Jiǔdiàn Iron Production Site, China

  • Bae, Chae Rin;Cho, Nam Chul;Jo, Young Hoon;Chen, Jianli
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.273-281
    • /
    • 2018
  • $Ji{\check{u}}di{\grave{a}}n$ iron production site in China is a relic smelting site, which in the past produced pig iron. In this study, scientific analysis of the smelting furnace and collected slag was conducted to reveal some aspects of the ancient Chinese smelting technique. A 3D model of the smelting furnace showed a narrow lower part and an upper section which increased in diameter upwards. Although the smelting furnace relic does not include the upper part and its complete shape cannot be predicted, the remaining part suggests that the furnace had a larger diameter in the central part compared to the upper and lower parts. Most of the collected slag was completely vitrified. Long prismatic fayalite was observed in the matrix of some samples. The iron particles contained phosphorus, which could not be discharged during smelting work. In addition, as the $CaO/SiO_2$ ratio was 0.42 or lower in the results of the content analysis, no CaO slag former had been added. However, the ratio of $CaO/SiO_2$ to $Al_2O_3/SiO_2$ did not have a constant trend. This needs to be investigated in a further study.

Review on bioleaching of uranium from low-grade ore (저품위(低品位) 우라늄철(鑛)의 미생물 침출법(浸出法))

  • Patra, A.K.;Pradhan, D.;Kim, D.J.;Ahn, J.G;Yoon, H.S.
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.30-44
    • /
    • 2011
  • This review describes the involvement of different microorganisms for the recovery of uranium from the ore. Mainly Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans are found to be the most widely used bacteria in the bioleaching process of uranium. The bioleaching of uranium generally follows indirect mechanism in which bacteria provide the ferric iron required to oxidize $U^{4+}$. Commercial applications of bioleaching have been incorporated for extracting valuable metals, due to its favorable process economics and reduced environmental problems compared to conventional metal recovery processes such as smelting. At present the uranium is recovered through main bioleaching techniques employed by heap, dump and in situ leaching. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.