• Title/Summary/Keyword: Indirect radiation

Search Result 110, Processing Time 0.02 seconds

Stability of a QD-blended Organic Photodiode for X-ray Imaging (X-선 영상 취득을 위한 양자점 혼합 유기재료 광다이오드의 안정성에 관한 연구)

  • Lee, Jehoon;Kang, Jungwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.15-18
    • /
    • 2017
  • In this study, we have studied the characteristics of the organic photodiode varying due to the blending conditions of the quantum dots (QDs). The active layer of the photodiode was formed with poly (3-hexylthiophene) and phenyl-C61-butyric acid methyl ester, and CdSe QDs with and without ZnS shell were blended in the active layer. The photodiode with CdSe/ZnS QDs showed the highest power conversion efficiency (PCE) and short-circuit current (Jsc). The performance change of the organic photodiode by X-ray irradiation was also measured. Regardless of X-ray irradiation conditions, the photodiode with CdSe/ZnS QDs showed better stability than other cases.

  • PDF

Unwanted effects due to interactions between dental materials and magnetic resonance imaging: a review of the literature

  • Chockattu, Sherin Jose;Suryakant, Deepak Byathnal;Thakur, Sophia
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2018
  • Magnetic resonance imaging (MRI) is an advanced diagnostic tool used in both medicine and dentistry. Since it functions based on a strong uniform static magnetic field and radiofrequency pulses, it is advantageous over imaging techniques that rely on ionizing radiation. Unfortunately, the magnetic field and radiofrequency pulses generated within the magnetic resonance imager interact unfavorably with dental materials that have magnetic properties. This leads to unwanted effects such as artifact formation, heat generation, and mechanical displacement. These are a potential source of damage to the oral tissue surrounding the affected dental materials. This review aims to compile, based on the current available evidence, recommendations for dentists and radiologists regarding the safety and appropriate management of dental materials during MRI in patients with orthodontic appliances, maxillofacial prostheses, dental implants, direct and indirect restorative materials, and endodontic materials.

Understanding the connection between O32 and LyC escape based on numerical simulations

  • Choe, Suhyeon;Kimm, Taysun;Katz, Harley;Yoo, Teahwa
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2021
  • Identifying the main source of reionization is one of the essential astrophysical problems that remain to be solved. But there are difficulties in directly measuring the Lyman continuum (LyC) escape fraction (fesc) from high-z galaxies, and other indirect methods have been suggested to identify potential LyC leakers. The O32 ratio ([OIII] λ5007 / [OII] λ3727) is one of those examples, which appear to positively correlate with fesc according to some observations and photoionization modelling of HII regions. However, recent studies fail to find such a correlation. Here we exploit a set of radiation-hydrodynamic simulations of giant molecular clouds to understand the physical connection between O32 and fesc. We post-process our simulations with the photo-ionization code Cloudy, and discuss the results obtained from the runs with different metallicities and input SEDs.

  • PDF

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

A Study on the Overall Economic Risks of a Hypothetical Severe Accident in Nuclear Power Plant Using the Delphi Method (델파이 기법을 이용한 원전사고의 종합적인 경제적 리스크 평가)

  • Jang, Han-Ki;Kim, Joo-Yeon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • Potential economic impact of a hypothetical severe accident at a nuclear power plant(Uljin units 3/4) was estimated by applying the Delphi method, which is based on the expert judgements and opinions, in the process of quantifying uncertain factors. For the purpose of this study, it is assumed that the radioactive plume directs the inland direction. Since the economic risk can be divided into direct costs and indirect effects and more uncertainties are involved in the latter, the direct costs were estimated first and the indirect effects were then estimated by applying a weighting factor to the direct cost. The Delphi method however subjects to risk of distortion or discrimination of variables because of the human behavior pattern. A mathematical approach based on the Bayesian inferences was employed for data processing to improve the Delphi results. For this task, a model for data processing was developed. One-dimensional Monte Carlo Analysis was applied to get a distribution of values of the weighting factor. The mean and median values of the weighting factor for the indirect effects appeared to be 2.59 and 2.08, respectively. These values are higher than the value suggested by OECD/NEA, 1.25. Some factors such as small territory and public attitude sensitive to radiation could affect the judgement of panel. Then the parameters of the model for estimating the direct costs were classified as U- and V-types, and two-dimensional Monte Carlo analysis was applied to quantify the overall economic risk. The resulting median of the overall economic risk was about 3.9% of the gross domestic products(GDP) of Korea in 2006. When the cost of electricity loss, the highest direct cost, was not taken into account, the overall economic risk was reduced to 2.2% of GDP. This assessment can be used as a reference for justifying the radiological emergency planning and preparedness.

Analytical Investigation of In-direct Heater to Simulate Space Thermal Environment for Thermal Vacuum Test (열진공 시험용 비접촉식 우주 열환경 모사 장치의 해석적 검토)

  • Baek, Cheul-Woo;Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.178-183
    • /
    • 2012
  • To simulate space thermal environment in thermal vacuum test, direct or in-direct heater has been applied on the radiator. Both of them, direct heater attached on the radiator and indirect heater with a distance from the radiator, simulate the heat fluxes from the Sun radiation, the Earth IR and Albedo. They also supply the heat fluxes to the radiator of spacecraft to achieve the target temperature according to thermal test conditions. In general, indirect heater is used when the heater is not allowed to attach on the radiator directly due to constraints of coating property or contamination. For in-direct heater design, it is needed to estimate the heat power to make the extreme test conditions and minimize the interference with heat exchange of radiator and shroud. In this study, optimized thermal design of in-direct heater is proposed and investigated by commercial S/W SINDA. The effective values of design factors are also derived.

Evaluating internal exposure due to intake of 131I at a nuclear medicine centre of Dhaka using bioassay methods

  • Sharmin Jahan;Jannatul Ferdous;Md Mahidul Haque Prodhan;Ferdoushi Begum
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2050-2056
    • /
    • 2024
  • Handling of radioisotopes may cause external and internal contamination to occupational workers while using radiation for medical purposes. This research aims to monitor the internal hazard of occupational workers who handle 131I. Two methods are used: in vivo or direct method and in vitro or indirect method. The in vivo or direct method was performed by assessing thyroid intake with a thyroid uptake monitoring machine. The in vitro or indirect method was performed by assessing urine samples with the help of a gamma-ray spectroscopy practice using a High-Purity Germanium (HPGe) Detector. In this study, fifty-nine thyroid counts and fifty-nine urine samples were collected from seven occupational workers who were in charge of 131I at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS), Dhaka. The result showed that the average annual effective dose of seven workforces from thyroid counts were 0.0208 mSv/y, 0.0180 mSv/y, 0.0135 mSv/y, 0.0169 m Sv/y, 0.0072 mSv/y, 0.0181 mSv/y, 0.0164 mSv/y and in urine samples 0.0832 mSv/y, 0.0770 mSv/y, 0.0732 mSv/y, 0.0693 mSv/y, 0.0715 mSv/y, 0.0662 mSv/y, 0.0708 mSv/y.The total annual effective dose (in vivo and in vitro method) was found among seven workers in average 0.1039 mSv/y, 0.0950 mSv/y, 0.0868 mSv/y, 0.0862 mSv/y, 0.0787 mSv/y, 0.0843 mSv/y, 0.0872 mSv/y. Following the rules of the International Commission on Radiological Protection (ICRP), the annual limit of effective dose for occupational exposure is 20 mSv per year and the finding values from this research work are lesser than this safety boundary.

An Optimal Structure of a Novel Flat Panel Detector to Reduce Scatter Radiation for Clinical Usage: Performance Evaluation with Various Angle of Incident X-ray (산란선 제거를 위한 신개념 간접 평판형 검출기의 임상적용을 위한 최적 구조 : 입사 X선 각도에 따른 성능평가)

  • Yoon, Yongsu
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.533-542
    • /
    • 2017
  • In diagnostic radiology, the imaging system has been changed from film/screen to digital system. However, the method for removing scatter radiation such as anti-scatter grid has not kept pace with this change. Therefore, authors have devised the indirect flat panel detector (FPD) system with net-like lead in substrate layer which can remove the scattered radiation. In clinical context, there are many radiographic examinations with angulated incident X-ray. However, our proposed FPD has net-like lead foil so the vertical lead foil to the angulate incident X-ray would have bad effect on its performance. In this study, we identified the effect of vertical/horizontal lead foil component on the novel system's performance and improved the structure of novel system for clinical usage with angulated incident X-ray. Grid exposure factor and image contrast were calculated to investigate various structure of novel system using Monte Carlo simulation software when the incident X-ray was tilted ($0^{\circ}$, $15^{\circ}$, and $30^{\circ}$ from the detector plane). More photons were needed to obtain same image quality in the novel system with vertical lead foil only then the system with horizontal lead foil only. An optimal structure of novel system having different heights of its vertical and horizontal lead foil component showed improved performance compared with the novel system in a previous study. Therefore, the novel system will be useful in a clinical context with the angulated incident X-ray if the height and direction of lead foil in the substrate layer are optimized as the condition of conventional radiography.

Preparation of an Inorganic Scintillator Loaded Film for the Measurement of Surface Contamination and its Performance Test (표면오염 측정용 무기섬광 함침 필름의 제조 및 성능 평가)

  • 서범경;이근우;임난주;박진호;한명진
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • The smear media possible to sampling and radiation detection was prepared and evaluated for the surface contamination using indirect method. The films were made by impregnating Cerium Activated Yttrium Silicate (CAYS) in a polysulfone membrane. The membranes used solution as a dimethylformamide (DMF) and methylene chloride (MC), polysulfone as a polymer matrix and CAYS as a inorganic scintillator. The proximity membranes were prepared with single- and double-layered structure. The solidified methods were immersion to the nonsolvent bath such at water and ethanol and solvent evaporation. The measurement of the photon produced by interaction with radiation and inorganic scintillator used a photomultiflier tube (PMT), amplifier, and counter. In the comparison with the low background alpha/beta counter, the counter rate using inorganic scintillator proximity membrane for the $\^$14/C surface contamination was about 50%. Also. the $^3$H counting results revealed that the prepared membranes were efficient to monitor the surface contaminated with the low energy be-ray emitter nuclides.

The Modified Method of Splenic Irradiation (초음파를 이용한 비장의 조준법)

  • Chung, Su-Mi;Jang, Hong-Seok;Choi, Ihl-Bohng;Kim, Choon-Yul;Bahk, Yong-Whee
    • Radiation Oncology Journal
    • /
    • v.6 no.2
    • /
    • pp.259-262
    • /
    • 1988
  • Splenic irradiation in chronic myelogenous leukemia is reserved for patients who have painful splenemegaly despite chemotherapy and/or inoperable splenomegaly because of huge size. The role of splenic irradiation is diminution of painful splenomegaly and indirect effect of splenic irradiation on unirradiated hematopoietic and lymphoreticular tissue such as reduction of leukocyte count and increase of hemoglobin level. We report on a useful clinical method for splenic irradiation in chronic myelogenous leukemia. We have used sonography as the tool of simulation. The portal size using modified method is smaller than the field size of conventional simulation, and so this method suggests that useful to irradiation of huge splenomegaly, effective shielding of critical organ and the downfall of complication during irradiation of spleen.

  • PDF