• Title/Summary/Keyword: Indirect Tensile Strength Test

Search Result 84, Processing Time 0.024 seconds

Methodology for Developing HMA Mix Design Taking into Account Performance-Related Mechanistic Properties (포장성능관련 역학적 특성이 고려된 아스팔트 혼합물의 배합설계법 개발 방안)

  • Kim Boo-Il;Lee Moon-Sup;Kim Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.15-23
    • /
    • 2006
  • Criteria of the current asphalt mix design, Marshall method, includes the stability and flow which are not related with field performance of HMA mixture, together with the air void, Void filled with asphalt (VFA) and/or Void of mineral Aggregate(VMA). In addition, the limits of stability and flow are satisfied in most cases, the Optimum asphalt content (OAC) is determined based on volumetric properties, such as the air void and/or VFA and/of VMA. Therefore, many researchers have sought mechanistic properties which can replace the stability and flow, making the designed mixture having potential for better field performance. This study initiated to develope a mix design by introducing two performance-related mechanistic properties, the deformation strengh and fracture energy, in place of the stability and flow of the Marshall method. The deformation strength $(S_D)$ from the Kim Test has a high correlation with rutting property and the fracture energy(FE) from the indirect tensile test represents the fatigue cracking property of asphalt mixture. Four types of asphalt mixture were prepared for examining possibility of using the suggested mix design method in comparison with current methods. The results showed that mechanical properties were reflected in determination of OAC with this suggested mix design, unlike the existing Marshall method.

  • PDF

A Study on Mechanical Characteristics of Fiber Modified Emulsified Asphalt Mixture as Environmentally-Friend Paving Material (섬유보강 친환경 상온아스팔트 혼합물의 역학적 특성에 관한 연구)

  • Rhee Suk-Keun;Park Kyung-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.23-30
    • /
    • 2006
  • Emulsified Asphalt Mixture(EAM) is more environmentally-friendly and cost-effective than typical Hot Mix Asphalt (HMA) because EAM does not produce carcinogenic substances, e.g., naphtha, kerosene, during the both of manufacturing and roadway construction process. Also, it does not require heating the aggregates and asphalt binder. However, EAM has some disadvantages. Generally EAM has a less load bearing capacity and more moisture susceptibility than conventional HMA. The study evaluated a Fiber modified EAM (FEAM) to increase load bearing capacity and to decrease moisture susceptibility of EAM. Modified Marshall mix design was developed to find Optimum Emulsion Contents (OEC), Optimum Water Contents (OWC), and Optimum Fiber Contents (OFC). A series of test were performed on the fabricated specimen with OBC, OWC, and OFC. Tests include Marshall Stability, Indirect Tensile Strength, and Resilient modulus test. Comparison analyses were performed among EAM, Fiber modified EAM (FEAM), and typical HMA to verify the applicability of EAM and FEAM in the field. Test results indicated that both of EAM and FEAM have an enough capability to resist medium traffic volume based on the Marshall mix design criteria. Also the study found that fiber modification is effective to increase the load bearing capacity and moisture damage resistance of EAM.

  • PDF

Statistical Evaluation of Moisture Resistance by Mixing Method of Recycled Asphalt Mixtures (혼합방법에 따른 순환아스팔트 혼합물의 수분저항성 통계검정 평가)

  • Kim, Sungun;Kim, Yeongsam;Jo, Youngjin;Kim, Kwangwoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 2021
  • When producing recycled asphalt mix, it is important that the old binder of reclaimed asphalt pavement(RAP) should be well melted during blending in the mixer. The recycled asphalt mix is produced by instant mixing(IM) of all materials(RAP, virgin asphalt and new aggregates) all together in the mixer. However, in the same recycled mix, the binder around RAP aggregate was found to show higher oxidation level than the binder coated around the virgin aggregate because the old binder of RAP was not rejuvenated properly while instant mixing. The partially-rejuvenated RAP binder is assumed to be a high stiffness point in IM recycled mix. In this study, the stage mixing(SM) method was introduced; blending RAP and virgin asphalt for the first stage, and then mixing all together with hot new aggregates for the second stage. To compare the effect of the two mixing methods on moisture resistance of recycled mixes, a statistical t-test was performed between SM and IM using indirect tensile strength(ITS) and tensile strength ratio(TSR). Three conditioning methods were used; a 16-h freezing and then 24-h submerging, 48-h submerging, and 72-h submerging in 60℃ water. It was found that the TSR(=ITSwet/ITSdry) values of the mixes prepared by SM was clearly higher than the IM mixes, and coefficients of variation of SM mixes were lower than the IM mixes. It was also observed that the ITSWET of SM was significantly different from the IM at α=0.05 level by statistical t-test. The ITSWET of SM mix was reduced less than the IM mix in severer conditioned mixes. Therefore, it was concluded that the stage mixing method was an important blending technique for producing better-quality of recycled asphalt mixes, which would show higher moisture resistance than the recycled mixes produced by conventional instant mixing.

Correlation of Binder GPC Characteristics and Mechanical Properties of Hot-Mix Recycled Asphalt Mixtures (재생혼합물의 바인더 GPC특성과 역학적 특성과의 상관성 연구)

  • Kim, Kwang-Woo;Hong, Sang-Ki;Cho, Mun-Jin;Doh, Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.11-20
    • /
    • 2005
  • This study examined the correlation between mechanical properties and LMS(Large molecular size) of binders in hot-recycled asphalt mixtures. Hot-recycled asphalt mixtures were manufactured by various mixing methods. Laboratory tests including indirect tensile strength, wheel tracking test and Kim test were performed for each recycled mixture. Gel-permeation chromatography (GPC) analysis was performed for the binders coated on virgin and old (RAP) aggregates separately. For the purpose of binder aging analysis, a round-shaped virgin coarse aggregates (13mm gravel) were introduced in recycled mixtures. This makes possible to distinguish the virgin aggregates from RAP aggregates in recycled mixtures for GPC sampling. Results of GPC showed that there was significant difference in aging level between the binder coated on RAP and that of virgin aggregates in the same recycled mixture. Regression analysis was performed to correlate mechanical properties to LMS ratio. Results showed that most of the mechanical properties had relatively good correlation with LMS. This trend agree with LMS increase up to some degree, but fails for further LMS increase.

  • PDF