• Title/Summary/Keyword: Indigo Dyeing

Search Result 131, Processing Time 0.02 seconds

Fabric Dyeing with Indigo and Japanese pagoda tree for Color mixture (II) - Treatment on Protein Fibers -

  • An, Sun-Young;Bae, Jung-Sook;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.306-313
    • /
    • 2010
  • To achieve color diversification of natural dyeing, color mixture dyeing with Indigo and Japanese pagoda tree is applied to wool and silk fabrics. After dyeing with Japanese pagoda tree extract solution of 5~25%(o.w.f.), the indigo dyeing was carried out up to four times. Alternatively after repeat dyeing with indigo one to seven times, the dyeing with Japanese pagoda tree extract solution was applied in 5 steps(5~25%). In color mixture dyeing, the dye uptake of wool fabrics appears higher than that of silk. The sequence of Japanese pagoda tree extract dyeing after Indigo dyeing was generally higher dye uptake compared with that of Indigo dyeing after Japanese pagoda tree extract dyeing. For wool and silk fabric, the pre-dyeing with Japanese pagoda tree solution was more effective for color diversification but the pre-dyeing with Indigo was more effective for the exhibition of intermediate color shade.

The Study on the Dyeing Properties of Natural Dyes(II) ―Dyeing Properties of Cotton and Silk Fabrics by Color Solution Extracted from Leaf Dyeing of Indigo Plant― (천연염료(쪽물)의 염색특성 연구(II) ―쪽 생엽 추출액에 의한 면 및 견섬유의 염색성―)

  • Kim, Ae Soon
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.16-24
    • /
    • 1995
  • Traditionally dyeing fabric with dyestuff extracted from Indigo was a popular method of obtaining blue color in the world before synthetic dyestuff was developed in the 1890's. As the Korean traditional process of dyeing extracted from Indigo, there are two kinds of dyeing process; The deposite dyeing of muddy Indigo and the leaf dyeing of Indigo plant. In order to study the properties of leaf dyeing of Indigo, the dyeing properties, color difference on cotton and silk fabrics under several dyeing conditions were investigated. In the dyeing of cotton and silk fabrics with leaf dyeing of Indigo, the dyeing affinity of silk was higher than that of cotton, the cotton and silk fabrics were dyed dark yellowish Green and dark Blue, respectively. the dye uptake increased with the increase of dyeing temperature and of the unmber of dyeing times. When cotton and silk fabrics dyed with leaf dyeing of Indigo at 6$0^{\circ}C$ for six number of times, the K/S value of dyed cotton and silk were calculated 1.286, 2.613 respectively.

  • PDF

The Transition of the Indigo Dyeing Method Identified through the Agricultural Archives in the Latter Joseon Dynasty (농학서를 통해 본 조선후기 남염법의 변천)

  • Kim, Soon-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.8
    • /
    • pp.1286-1298
    • /
    • 2008
  • This study was attempted to examine the indigo dyeing technique in the latter Joseon Dynasty, and to find diachronic specifics in the indigo dyeing method from 17C to 19C. The results are as follows: First, There were 2 kinds of indigo species-Yoram(Polygonum tinctorium Lour.) and Sungram(Isatis tinctoria L.)-in the latter Joseon Dynasty. Dangram was preferred in particular among Yoram species because of its high dyeing efficiency. Sungram was mainly used for making Jeon(indigo sediment). Second, Yoram cultivation took the following order: Sowing in April${\rightarrow}$planting out in June${\rightarrow}$harvesting leaves in August${\rightarrow}$collecting seeds in September. Sungram had more harvesting times and wider harvesting period than Yoram. Third, all indigo dyeing methods were grouped into two categories, one was temporary dyeing method, the other was permanent dyeing method. Mixture dyeing of the boiled and the raw, raw leaves dyeing, and fermentation dyeing belonged to the temporary dyeing. Jeon dyeing and Gaeogi dyeing belonged to the permanent dyeing. Finally, diachronic specifics from 17C to 19C were as follows: Decline in the mixture dyeing of the boiled and the raw, development in the raw leaves dyeing, continuance of the fermentation dyeing, and naturalization of Jeon dyeing technique.

A Study on the Complex Dyeing of Natural Dye (천연염료의 복합염색에 관한 연구)

  • Shin, Young-Joon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.4
    • /
    • pp.151-162
    • /
    • 2012
  • Regarding experimental study on the dyeing properties of natural dye, I have dyed silk fabric with Styphnolobium japonicum, sappan wood, and indigo. The results of the experiment have been analysed by wavelength of maximum absorption, K/S and CIE Lab chromaticity co-ordinated. The results are as follows: In case of complex dyeing using Styphnolobium japonicum and sappan wood, dyeing with sappan wood, which is red related color, after dyeing with Styphnolobium japonicum, which is yellow related color, is more efficient. When dyeing was maden by complex of Styphnolobium japonicum and sappan wood, Dyeing method by the order of "Styphnolobium japonicum${\rightarrow}$sappan wood${\rightarrow}$mordanting" made the best result of complex dyeing. In case of complex dyeing using Styphnolobium japonicum and Indigo, dyeing with Styphnolobium japonicum after the indigo made the best result. When dyeing with indigo first, and then Styphnolobium japonicum, yellow color was not well dyed, and low level of saturation caused lusterless color. Ordering of Styphnolobium japonicum${\rightarrow}$sappan wood${\rightarrow}$indigo made the best result of complex dyeing in case of complex dying with Styphnolobium japonicum and indigo. Dyeing order, sappan wood first and then indigo last method shown 560~640 nm wavelength of maximum absorption which most color was blue related. In contrast, Indigo first and then sappan wood method shown 460~560nm wavelength of maximum absorption which color was red related. Complex dyeing with sappan wood and indigo was showing lusterless color. In case of dyeing with red and blue, dyeing with sappan wood and indigo was not appropriate.

  • PDF

Color-matching of Fabrics by Natural Dyeing using Indigo and Safflower (쪽과 홍화를 이용한 색상배합 염색)

  • 유혜자;이혜자
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.32-38
    • /
    • 2003
  • To get the variety of color by natural dyeing, cotton and silk fabrics were dyed with natural indigo and safflower in turn. The two ways of dyeing processes were carried. First, silk and cotton fabrics were dyed repeatedly in safflower dyebath to five times to get the five fabrics dyed in different shades. And then indigo dyeing process was carried on the top of the dyed fabrics with safflower. In second way, the fabrics were dyed in five stages of shade by repetition of dyeing process in indigo dyebath. And then safflower dyeing was carried on the top of the dyed fabrics with indigo. When indigo dyeing process was added on the top of the fabrics dyed in five shades with safflower, the color differences decreased between five shades of fabrics, their color values got similar in hue, shade and chroma. When safflower dyeing process was added on the top of the fabrics dyed in five shades with indigo, the fabrics showed different hue of colors between red and blue of Munsell color circle such as RP, P and PB. Like almost of fabrics dyed with plants materials, the lightfastness and laundering fastness of dyed samples were poet and drycleaning fastness were good.

Expansion of Color Space in Hanji Fabrics by Using Sustainable Natural Dyeing: Focused on Natural Indigo Dyeing and Combination Dyeing (지속가능 천연염색을 이용한 한지직물의 색채공간 확장: 쪽염색과 복합염색을 중심으로)

  • Kyunghee Son
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.82-96
    • /
    • 2023
  • The purpose of this study is to enhance the usability of hanji fabrics by expanding the color space of hanji fabrics. For the expression of various colors of hanji fabrics, single and combination dyeing were carried out using natural indigo(Niram, Polygonum tinctorium), marigold extract colorant, and madder extract colorant for three types of hanji fabrics with different fiber compositions(hanji, hanji/cotton, hanji/silk). The light, medium, and deep colors obtained through individual single dyeing were shown to be PB Munsell colors in the case of indigo dyeing, Y color for marigold dyeing, and R color for madder dyeing. For combination dyeing, indigo dyeing was first carried out under the conditions for light, medium, and deep colors, respectively, and marigold or madder dyeing was performed thereafter. Indigo and marigold combination dyeing produced PB, B, BG, G, and GY Munsell colors and indigo and madder combination dyeing produced PB, P, RP, and R Munsell colors. Overall, the color change of hanji/silk fabric was more diverse than that of hanji fabric and hanji/cotton fabric. In the indigo, marigold, and madder combination dyeing into individual deep colors, blackish PB and P Munsell colors was obtained. Colorfastness to washing, dry cleaning, rubbing, and light were relatively good with above rating 4. Finally, 9 colors excluding YR color out of 10 Munsell color were obtained. We confirmed that the expansion of the color space of Hanji fabrics by the single and combination dyeing with indigo, marigold, and madder.

A Study on the Current Status and Dyeing Characteristics of Natural Indigo Powder Dye (천연 쪽 분말염료의 현황 및 염색특성 연구)

  • Oh, Jee-Eun;Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.7
    • /
    • pp.736-747
    • /
    • 2011
  • This study investigates the current status and dyeing properties of various natural indigo powder dyes in the domestic market. Products from India, China, Europe are sold in the market and only a few manufacturers provide recommendation for the method of dyeing and information on the additives. Through the market research and the preliminary investigation on 21 products, 11 were selected for the dyeing experiment which include 3 Indian, 3 Chinese, 2 German, and 1 Pakistani origin indigo reduced powders, and 2 Indian origin dried indigo leaf powder. The two dyeing methods used were the precipitation method and the fresh juice method, both at $10^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. Color difference, K/S value, and colorfastness of dyed cotton fabrics were examined. Indian reduced indigo powder showed the highest K/S value, deep dyeing, and the best color fastness. Chinese reduced indigo powder resulted in a more greenish and bluish color. Powders of dried indigo leaves were easy to use but resulted in a pale color due to low dye uptake.

Color Development of combination Dyeing of Indian Indigo and Turmeric Extracts, Gardenia Extracts (인도쪽과 울금 및 치자의 복합염색에 의한 색상 변화)

  • 정진순;설정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.2
    • /
    • pp.325-336
    • /
    • 2002
  • This study investigated color change of combination dyeing silk fabrics dyed with Turmeric extracts and Gardenia extracts after dyeing of Indian indigo. Experimental variables include the condition of dyeing time and concentration of Turmeric extracts, Gardenia extracts, arid dyeing cycle of Indian indigo. Surface color of silk fabrics dyed with Turmeric 77tracts after one cycle dyeing, two cycles dyeing, four cycles dyeing of Indian indigo was changed from 5.1GY to 0.3GY, 1.5G to 3.5GY and 6.5G to 5.8GY by increase of concentration of Turmeric extracts. On the other hand, Surface color of silk fabrics dyed with Gardenia extracts after one cycle dyeing, two cycles dyeing, four cycles dyeing of Indian indigo was changed from 7.5Y to 3.9Y, 1.2GY to 6.7Y and 4.0GY to 8.6GY by increase of concentration of Gardenia extracts. Its range of surface color was changed to green and yellowish green by increase of dyeing time with concentration of Turmeric extracts. On the other hand, its range of surface color was changed to yellowish and yellow by increase of dyeing time with concentration of Gardenia extracts.

An Experimental Study on the Dyeability of Indigo and Indigo Pulberata Levis (쪽과 청대의 염색성에 관한 연구)

  • Shin, Young-Joon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.12 no.4
    • /
    • pp.149-157
    • /
    • 2010
  • After observing various changed colors by some dyeing conditions in case of the Indio and Indigo Pulberata Levis, we had below result. 1. Best reduction temperature for Indigo was $50^{\circ}C$, and the reduction temperature had an effect on level dyeing and dye-uptake. For the Indigo Pulberata Levis, best reduction temperature was $60^{\circ}C$, and best reduction time for Indigo was 20 minutes, for the Indigo Pulberata Levis was 30~40 minutes. 2. Both Indigo and Indigo Pulberata Levis showed high K/S without using alkali, but it was almost not possible to be dyed without reduction agent. The best amount of potassium carbonate concentration and soldium hydrosulfite concentration was $2{\sim}3g/{\ell}$ and $2g/{\ell}$ each for dyeing. 3. The best dyeing temperature for Indigo was $30^{\circ}C$ and $60^{\circ}C$ for Indigo Pulberata Levis. 4. In case of Indigo, K/S increased slightly at $5g/{\ell}$ concentration. Thus, $5g/{\ell}$ is efficient amount. However, it needed $50g/{\ell}$ to increase K/S for Indigo Pulberata Levis. It tells that we need a lot of Indigo Pulberata Levis for dyeing dark color. 5. Indigo dyed cotton looked more greener than silk. Since silk absorbs lots of red color, it looked strong red color. However, Indigo Pulberata Levis looked greenish on both cotton and silk. 6. Since the hue's range of Munsell's value was PB for both Indigo and Indigo Puberata Levis, we are able to know that red color's indirubin is contained as well as blue color's indigo.

  • PDF

A Comparative Study of Indigo Dyes and Dyeing in 19th Century Korea and England

  • Kim, Soon-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.1933-1946
    • /
    • 2010
  • This paper is a comparative analysis of the $19^{th}$ century practice of indigo dyes and dyeing in Korea and England. From over hundreds species of indigo plants in the world, it was dyer's knotweed and woad that were cultivated in Korea; however, the only indigo plant grown in England was woad. Indigo dye was produced in the form of damp indigo sediment (jeon) in Korea; however, imported indigo (as a main dye) and couched woad (as an additional dye) were indigo dyes used in England. There existed three kinds of indigo vats, the ice vat, ash-water vat, and indigo sediment (jeon) vat, in Korea. The fresh leaves of indigo were used for both the ice vat and ash-water vat. The ice vat was very convenient for preparation, but had a weakness in the inability to produce a very deep shade of blue. The ash-water vat and indigo sediment (jeon) vat were in use for producing a very deep shade of blue. The indigo sediment Goon) vat was employed presumably only by professional dyers. The indigo vat practiced in England was categorized into two types; one was woad-indigo vat, and the other was an indigo powder vat prepared by using imported indigo rock. There was a tendency to adopt different kinds of indigo vats according to the material to be dyed. The woad-indigo vat was employed for the dyeing of wool. A few of chemical vats with imported indigo were adopted, especially for the dyeing of cotton. Indigo dyers in 19th century Korea were differentiated from the rest of the dyers. They managed the growing of indigo plants as well as the production of indigo sediment (jeon). Woad dyers in 19th century England handled woolen cloth as well as worsted and woolen yarn in general. However, they sometimes dyed silk skein as well. They produced several colors such as black, blue, slates, grays, by using both woad and imported indigo.