최근 다양한 응용 분야에서 이동 객체의 현재 위치를 기반으로 미래 위치를 검색하기 위한 필요성이 증가되고 있다. 이와 함께, 대용량의 이동 객체를 빠르게 검색하기 위한 색인 구조의 필요성이 증가되고 있다. 기존에 제안된 색인 구조들은 이동 객체의 위치를 검색하는 과정에서 불필요한 노드의 확장을 유발시켜 검색 성능이 저하되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 객체의 이동성을 고려한 공간 분할 방식의 색인 구조를 제안한다. 제안하는 색인 구조는 노드의 오버플로우를 처리하기 위해 형제 노드와 병합 분할을 수행하고 형제 노드와 병합을 수행하여 오버플로우를 처리할 수 없을 경우에는 이동성을 고려하여 분할을 수행한다. 제안하는 색인 구조는 분할된 영역들 사이에 겹침 영역이 발생하지 않으며 속도, 이동 객체가 노드의 영역을 벗어나는 시간, 노드의 갱신 시간과 같은 파라미터를 고려하여 분할 위치를 판별한다. 중간 노드에서는 공간 분할 방식의 색인 구조에서 발생하는 연속 분할을 방지하기 위한 분할 위치를 판별한다. 제안하는 색인 구조의 우수성을 입증하기 위해 이동 객체에 대한 검색 성능을 비교 분석한다. 성능 평가 결과 제안하는 색인 구조는 현재 위치 검색에 대해서는 $17%{\sim}264%$ 그리고 미래 위치 검색에 대해서는 $107%{\sim}19l%$ 성능 향상을 나타낸다.
멀티미디어 데이터를 위한 내용기반 검색 서비스의 속도를 증진하기 위해 다차원 색인 기법에 대한 연구가 활발하게 진행되고 있다. 다차원 색인 기법의 하나인 M-트리는 노드의 중심점과 객체간의 상대적 거리를 이용하여 색인을 구성하고, 검색 공간에 포함되는 객체를 액세스하는 기법으로서 노드들은 페이지 단위로 구성되며 하위 엔트리들을 포함할 수 있는 반경, 즉 유사도 거리에 의해 노드의 영역이 표현되어진다. 그러나 이와 같은 노드의 영역 표현에 있어서 노드 색인 공간의 중첩으로 인해 질의 시 검색해야 하는 노드수가 증가하고 이는 거리계산과 디스크 입출력의 횟수를 증가시킨다. 본 논문에서는 M-트리에서 문제가 되고 있는 노드 색인 공간 중첩을 최소화하는 노드 분할 정책을 제안한다. M-트리의 기존 분할 정책들과는 다르게 노드의 가상 중심점을 계산하여 라우팅 객체로 이용하여 노드 색인 공간의 중첩을 최소화하고 노드 안의 엔트리 재분배를 통해 노드의 색인 공간의 크기를 작게 유지하며 밀도 높은 노드를 구성하도록 한다. 실험으로부터 제안된 노드 분한 알고리즘이 라우팅 노드의 색인 공간의 반경을 작게 유지하며 결과적으로는 사용자 질의에 대해 개선된 응답 시간을 제공하는 것으로 판명되었다.
Haroon, Saroona;Hashmi, Atif Ali;Khurshid, Amna;Kanpurwala, Muhammad Adnan;Mujtuba, Shafaq;Malik, Babar;Faridi, Naveen
Asian Pacific Journal of Cancer Prevention
/
제14권7호
/
pp.4353-4358
/
2013
Introduction: Breast cancer aggressiveness can be correlated with proliferation status of tumor cells, which can be ascertained with tumor grade and Ki67 indexing. However due to lack of reproducibility, the ASCO do not recommend routine use of Ki67 in determining prognosis in newly diagnosed breast cancers. We therefore aimed to determine associations of the Ki67 index with other prognostic markers like tumor size, grade, lymph node metastasis, ER, PR and HER2neu status. Methods: A total of 194 cases of newly diagnosed breast cancer were included in the study. Immunohistochemical staining for ER, PR, HER2neu and Ki67 was performed by the DAKO envision method. Associations of the Ki67 index with other prognostic factors were evaluated both as continuous and categorical variables. Results: Mean age of the patients was 51.7 years (24-90). Mean Ki67 index was 26.9% (1-90). ER, PR, HER2neu positivity was noted in 90/194 cases (46.4%), 74/194 cases (38.1%) and 110/194 cases (56.70%) respectively. Significant association was found between Ki67 and tumor grade, PR, HER2neu positivity and lymph node status, but no link was apparent with ER positivity and tumor size. There wasan inverse relation between Ki67 index and PR positivity, whereas a direct correlation was seen with HER2neu positivity. However, high Ki67 (>30%) was associated with decreased HER2neu positivity as compared to intermediate Ki67 (16-30%). The same trend was established with lymph node metastasis. Conclusion: Our study indicates that with high grade tumors, clinical utility of ki67 is greater in combination with other prognostic markers because we found that tumors with Ki67 higher than 30% have better prognostic profile compared to tumors with intermediate Ki67 level, as reflected by slightly lower frequency of lymph node metastasis and HER2neu expression. Therefore we suggest that Ki67 index should be categorized into high, intermediate and low groups when considering adjuvant chemotherapy and prognostic stratification.
정보사회가 인터넷의 보급과 더불어 복잡해짐에 따라 데이타베이스의 흐름은 문자나 숫자와 같은 일차원적인 데이타가 아닌 지리정보, 멀티미디어 데이타와 같은 다차원의 데이타를 저장하고 이에 대한 질의를 처리할 수 있는 시스템을 요구하고 있다 따라서, 다차원적인 특성을 지니는 데이타에 대한 효율적 검색을 위한 다차원 인덱싱 구조에 대한 연구가 활발히 진행되어 왔으며, 그와 동시에 이러한 인덱싱 구조하에서 효율적인 질의 처리를 위한 연구도 병행되고 있다. 다차원 데이타는 그 다양한 응용분야에 따라 요구되는 질의의 형태가 각각 다르므로 이에 대응할 수 있는 알고리즘의 연구가 필요하다. 현재, 많은 다차원 데이타 처리 시스템이 R-트리계열의 인덱싱구조를 근간으로 구성되었으나, 현재까지의 질의처리 기법은 질의처리시에 필터링 특성을 지니지 않으므로, 객체들간의 다차원 거리계산으로 인하여 많은 질의처리 시간을 소요한다. 본 논문에서는 다차원 데이타를 처리하기 위한 R-트리 계열의 다차원 인덱싱 구조에서의 효율적인 질의처리를 위하여 질의처리 대상 객체를 줄이기 위한 필터링 기법을 소개하였다. 필터링을 수행하기 위하여 VP-트리와 MVP-트리에서 사용되었던 VP(Vantage Point)를 이용한다. 먼저, VP 필터링의 개념을 소개하고, VP 필터링을 영역질의와 포인트 질의의 일종인 추가객체요구질의에 각각 적용한 알고리즘을 제시하였다. VP 필터링을 적용하기 위하여 요구되는 삽입 객체와 VP간의 거리계산 시간은 객체의 삽입시 수행되며, 질의 처리를 수행할 때에는 다시 계산되지 않는다. 논문에서는 제안된 알고리즘의 효율성을 실험을 통하여 증명하였다.
동명이인의 저자를 구분하는 것은 웹에서 문서 색인과 검색의 성능을 향상시킨다. 동명이인의 저자 구분은 웹사이트 상에서 같은 이름을 갖는 여러 명의 사람이 존재했을 때 야기되는 여러 가지 문제점을 해결한다. 본 논문은 동명이인의 저자 구분을 위해 개념망 기반의 카테고리 유틸리티를 제안한다. 따라서 본 논문에서는 학술회의 웹 사이트를 대상으로 제안하고자 하는 방법을 설명한다. 제안된 방법은 저자가 가지고 있는 다양한 속성(제목, 요약, 공동저자, 소속)을 반영한 저자 온톨로지와 개념망을 활용한다. 저자 온톨로지는 OWL API와 휴리스틱한 방법을 사용하여 반자동으로 구축 되었다. 저자명 모호성 해결은 개념망 기반 카테고리 유틸리티를 사용하여 저자 온톨로지 내에 존재하는 동명이인 저자(Candidate Authors)들로부터 해당 논문에 관련된 정확한 저자를 결정한다. 카테고리 유틸리티는 각각의 저자간의 intra-class 유사성 와 inter-class 비유사성을 기본적인 개념으로 하는 평가 함수다. 이에 비해 개념망 기반 카테고리 유틸리티는 모호성 해결을 위해 개념망이 갖는 개념 정보를 추가로 활용한다. 실험 결과를 분석한 결과 개념망 기반 카테고리 유틸리티가 일반적인 카테고리 유틸리티에 비교해서, 저자명 모호성 해결에 있어서 10% 정도 우수한 성능을 보였으며, 전체적으로 98%의 정확도를 보였다.
오늘날 급격한 멀티미디어 정보의 증가에 따라 영상에서의 시각적 특성을 이용하여 멀티미디어 데이터를 검색하는 내용 기반 영상 검색 기법에 대한 관심이 크게 늘어나고 있다. 본 논문에서는 효과적인 영상 검색을 위한 새로운 접근으로서 edge correlogram과 color coherence vector를 이용한 에지 기반의 공간 기술자를 제안한다. 우선 color vector angle기법을 이용하여 주어진 영상을 고주파 성분과 저주파 성분의 영상으로 나눈다. 저주파 성분의 영상에서는 color coherence vector를 이용하여 평탄 화소의 공간적인 색상 분포를 추출함으로써 이를 평탄 영역에서의 특징 정보로서 활용한다. 반면, 고주파 성분의 영상에서는 edge correlogram으로부터 에지 화소들 간의 분포를 추출하여 이를 에지 영역에서의 특징 정보로 이용한다. 제안된 방법은 색상 간의 지엽적인 특성과 전체적인 특성을 모두 가지고 있기 때문에, 영상 간의 비교에 있어서 영상의 모양과 크기의 급격한 변화로 인한 오검출 등에 매우 강건하다. 또한, 영상에서의 구조적인 특징을 이용함으로써 복잡한 영상에 대해서도 간단하고 유연한 특징을 제공한다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 알고리즘이 최근의 여러 히스토그램 정밀화 기법에 비하여 더 효과적임을 보여준다. 데이터베이스 내 영상의 색인을 위해서는 R*-tree 구조를 이용하였다.
특징 기반 유사성은 멀티미디어 데이터베이스 시스템에서 중요한 연구 쟁점이 되고 있다. 멀티미디어 데이터의 특징이 멀티미디어 객체들을 구별하는데 유용하다지만 특징 벡터의 차원의 수가 증가함에 따라 종래의 다차원 데이터 구조의 성능은 떨어지는 경향이 있다. $R^{*}-Tree$는 R-Tree의 가장 성공적인 병형으로 본 논문에서 고차원 특징 벡터를 위한 새로운 인덱싱 방법으로서 자기 조직화 맵 기반 $R^{*}-Tree$를 제안한다. 자기 조직화 맵 기잔 $R^{*}-Tree$는 고차원 데이터를 좀더 스칼라화해서 탐색할 수 있도록 SOM과 $R^{*}-Tree$를 결합하여 구축한 인덱싱 기법이다. 자기 조직 맵은 고차원 특징 벡터들로부터 2차원 공간으로의 맵핑을 제공한다. 그러나 맵을 위상 특징 맵이라 하고 인접 노느에서 서로 유사한 특징 벡터들을 모아서 입력데이터의 특징 공간들 속에 유사성을 보존하는데 위상 특징 맵의 각 노드는 코드북 벡터를 가지고 있다. 실험적으로 4만개의 이미지로부터 추출된 색깔 특징 벡터들을 이용하여 자기 조직화 맵 기반 $R^{*}-Tree$의 검색시간 비용과 자기 조직화 맵과 $R^{*}-Tree$의 검색 시간 비용을 비교한다. 그 결과 $R^{*}-Tree$를 구축하는데 필요한 노드 수와 검색 시간 비용이 감소됨으로써 자기 조직화 맵 기반 $R^{*}-Tree$는 자기 조직화 맵과 $R^{*}-Tree$보다 훨씬 우수한 성능을 나타냄이 입증되었다.
본 논문에서는 효율적인 얼굴 영역 검출 기법을 제안하고 얼굴 객체 검출을 통해 인물 기반의 비디오 시스템을 제공한다. 비디오 분할을 위해 비디오 시퀀스로부터 장면 전환점을 검출하고 분할된 장면들로부터 대표 프레임을 선정한다. 대표 프레임은 인접 프레임 간 변화량이 가장 적은 프레임으로 선정하였으며 추출된 대표 프레임에 대해서 얼굴 영역 검출 알고리즘을 적용하여 등장인물을 포함하는 프레임들을 정보로 제공한다. 얼굴영역 검출을 위해 피부색의 통계적 특성을 이용한 Bayes 분류기를 이용한다. 피부색 검출 결과 영상으로부터 수직 및 수평 투영 기법을 이용하여 영상 분할을 수행하고 후보군들을 생성한다. 생성된 후보군 중 오검출 영역을 최소화하기 위해서 이진 분류 나무(CART)를 이용하여 분류기를 생성한다. 특징 값으로는 SGLD(spatial gray level dependence) 매트릭스로부터 Inertial, Inverse Difference, Correlation 등의 질감 정보를 이용하여 최적의 이진 분류 나무를 생성한다. 실험 결과 제안된 얼굴 영역 검출 알고리즘은 복잡하고 다양한 배경에서도 우수한 성능을 보였으며, 얼굴 객체를 포함하는 프레임들을 비디오 정보로 제공한다. 제안하는 시스템은 향후 화자 인식 기법을 이용하여 등장인물 기반의 비디오 분석 및 에 활용될 수 있을 것이다.
본 연구에서는 내용 기반 음악 정보 검색 시스템의 검색 속도를 증진하기 위해 음악의 대표 선율인 주제 선율을 추출하여 주제 선율 색인을 구성하고 이를 이용한 효율적인 내용 기반 음악 정보 검색 기법을 제안하였다. 추출된 주제 선율을 다차원 공간 색인 기법인 M-tree를 이용하여 주제 선율 색인으로 구성하기 위해 주제 선율의 평균 음 높이 변화량과 평균 음 길이 변화량을 이용하였으며 검색의 정확도를 증진하기 위해 음 높이 변화 패턴을 요약한 높이 시그니처와 음 길이 변화 패턴을 요약한 길이 시그니처를 이용하였다. 또한 제안된 내용 기반 음악 정보 검색 기법에서는 사용자의 질의 선율로부터 질의 선율의 패턴 정보를 구성하고 M-tree의 k-근접 검색 및 범위 검색 기법을 이용하여 사용자의 질의 선율과 유사한 주제 선율을 포함하고 있는 음악 정보를 검색한다. 검색된 결과로부터 순위 부여한 후 사용자 피드백을 하여 사용자의 만족도를 증진하기 위한 특성을 포함하도록 하였다. 또한, 본 논문에서 제안된 주제 선율 색인 기법 및 내용 기반 검색 기법을 포함한 내용 기반 음악 정보 검색 시스템의 프로토타입을 구현하여 제안된 기법의 실효성을 입증하였다.
RFID 태그의 시공간 이력정보는 리더에 의해 수집된 선분인 태그간격으로 모델링될 수 있으며, 태그 식별자(TID), 위치 식별자(LID), 시간(TIME)을 축으로 하는 3차원 도메인에서 색인될 수 있다. 도메인 공간에서 태그간격의 분포는 태그 위치추적 질의의 성능을 결정짓는 주요 요소이며 이는 각 도메인 좌표의 정렬에 따라 달라진다. 특히, 시간에 따라 변경되는 태그의 위치 이력을 검색하는 태그 위치추적 질의는 위치정보를 제공하는 LID가 도메인에서 정렬되는 순서에 따라 성능이 달라진다. 따라서, 색인에 저장된 태그간격의 검색 성능 향상을 위해서는 최적의 LID 순서를 결정하는 것이 필요하다. 이를 위하여 이 논문에서는 LID 간의 새로운 순서화 기준으로써 적용하기 위한 LID 근접성을 정의하고, 질의 시 함께 접근되는 태그간격을 색인에서 근접 저장하기 위한 LID 근접성 함수를 제안한다. 또한, 이를 기반으로 이미 부여된 LID의 재순서 기법을 제안한다. 성능 평가 결과 이 논문에서 제안한 LID 재순서 기법을 색인에 적용했을 때 기존의 LID 부여방식보다 월등한 질의 성능 향상을 보여주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.